Combinatorial games : tic-tac-toe theory /

Beck, József.

Combinatorial games : tic-tac-toe theory / József Beck. - Cambridge : Cambridge University Press, (c)2008. - 1 online resource (xiv, 732 pages) : illustrations. - Encyclopedia of mathematics and its applications ; volume 114 .

Includes bibliographical references.

part A. Weak win and strong draw -- chapter I. Win vs. weak win -- Illustration : every finite point set in the plane is a weak winner -- Analyzing the proof of theorem 1.1 -- Examples : tic-tac-toe games -- More examples : tic-tac-toe like games -- Games on hypergraphs, and the combinatorial chaos -- chapter II. The main result : exact solutions for infinite classes of games -- Ramsey theory and clique games -- Arithmetic progressions -- Two-dimensional arithmetic progressions -- Explaining the exact solutions : a meta-conjecture -- Potentials and the Erdős-Selfridge theorem -- Local vs. global -- Ramsey theory and hypercube tic-tac-toe -- part B. Basic potential technique : game-theoretic first and second moments -- chapter III. Simple applications -- Easy building via theorem 1.2 -- Games beyond Ramsey theory -- A generalization of Kaplansky's game -- chapter IV. Games and randomness -- Discrepancy games and the variance -- Biased discrepancy games : when the extension from fair to biased works! -- A simple illustration of "randomness" (I) -- A simple illustration of "randomness" (II) -- Another illustration of "randomness" in games. part C. Advanced weak win : game-theoretic higher moment -- chapter V. Self-improving potentials -- Motivating the probabilistic approach -- Game-theoretic second moment : application to the picker-choose game -- Weak win in the lattice games -- Game-theoretic higher moments -- Exact solution of the clique game (I) -- More applications -- Who-scores-more games -- chapter VI. What is the biased meta-conjecture, and why is it so difficult? -- Discrepancy games (I) -- Discrepancy games (II) -- Biased games (I) : biased meta-conjecture -- Biased games (II) : sacrificing the probabilistic intuition to force negativity -- Biased games (III) : sporadic results -- Biased games (IV) : more sporadic results -- part D. Advanced strong draw : game-theoretic independence -- chapter VII. BigGame-SmallGame decomposition -- The Hales-Jewett conjecture -- Reinforcing the Erdős-Selfridge technique (I) -- Reinforcing the Erdős-Selfridge technique (II) -- Almost disjoint hypergraphs -- Exact solution of the clique game (II). chapter VIII. Advanced decomposition -- Proof of the second ugly theorem -- Breaking the "square-root barrier" (I) -- Breaking the "square-root barrier" (II) -- Van der Waerden game and the RELARIN technique -- chapter IX. Game-theoretic lattice-numbers -- Winning planes : exact solution -- Winning lattices : exact solution -- I-can-you-can't games -- second player's moral victory -- chapter X. Conclusion -- More exact solutions and more partial results -- Miscellany (I) -- Miscellany (II) -- Concluding remarks -- Appendix A : Ramsey numbers -- Appendix B : Hales-Jewett theorem : Shelah's proof -- Appendix C : A formal treatment of positional games -- Appendix D : An informal introduction to game theory.

"Traditional game theory has been successful at developing strategy in games of incomplete information: when one player knows something that the other does not. But it has little to say about games of complete information, for example, tic-tac-toe, solitaire, and hex. This is the subject of combinatorial game theory. Most board games are a challenge for mathematics: to analyze a position one has to examine the available options, and then the further options available after selecting any option, and so on. This leads to combinatorial chaos, where brute force study is impractical." "In this comprehensive volume, Jozsef Beck shows readers how to escape from the combinatorial chaos via the fake probabilistic method, a game-theoretic adaptation of the probabilistic method in combinatorics. Using this, the author is able to determine the exact results about infinite classes of many games, leading to the discovery of some striking new duality principles."--BOOK JACKET.



9781461941460


Game theory.
Combinatorial analysis.


Electronic Books.

QA269 / .C663 2008