000 07196cam a2200457Ki 4500
001 ocn894227095
003 OCoLC
005 20240726105424.0
008 141103s2014 enka ob 001 0 eng d
020 _a9781107472068
_q((electronic)l(electronic)ctronic)
020 _a9781139236294
_q((electronic)l(electronic)ctronic)
040 _aNT
_beng
_erda
_epn
_cNT
_dCAMBR
_dYDXCP
_dWAU
_dOCLCQ
_dUMI
_dDEBBG
_dEUX
_dCN3GA
_dCDX
_dOCLCF
_dCOO
_dE7B
_dUIU
_dDEBSZ
_dOCLCQ
_dCEF
_dOCLCQ
_dWYU
_dTKN
_dOCLCQ
_dAU@
_dOCLCQ
_dOL
_dOCLCO
049 _aMAIN
050 0 4 _aQC176
_b.A675 2014
066 _cZsym
100 1 _aWolfram, Thomas,
_d1936-
_e1
245 1 0 _aApplications of group theory to atoms, molecules, and solids /Thomas Wolfram, Şinasi Ellialtioğlu.
260 _aCambridge :
_bCambridge University Press,
_c(c)2014.
300 _a1 online resource (xii, 471 pages) :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _adata file
_2rda
504 _a2
505 0 0 _aMachine generated contents note: 1. Introductory example: Squarene --
_t1.1. In-plane molecular vibrations of squarene --
_t1.2. Reducible and irreducible representations of a group --
_t1.3. Eigenvalues and eigenvectors --
_t1.4. Construction of the force-constant matrix from the eigenvalues --
_t1.5. Optical properties --
_tReferences --
_tExercises --
_t2. Molecular vibrations of isotopically substituted KB2 molecules --
_t2.1. Step 1: Identify the point group and its symmetry operations --
_t2.2. Step 2: Specify the coordinate system and the basis functions --
_t2.3. Step 3: Determine the effects of the symmetry operations on the basis functions --
_t2.4. Step 4: Construct the matrix representations for each element of the group using the basis functions --
_t2.5. Step 5: Determine the number and types of irreducible representations --
_t2.6. Step 6: Analyze the information contained in the decompositions --
_t2.7. Step 7: Generate the symmetry functions --
_t2.8. Step 8: Diagonalize the matrix eigenvalue equation.
505 0 0 _aContents note continued: 2.9. Constructing the force-constant matrix --
_t2.10. Green's function theory of isotopic molecular vibrations --
_t2.11. Results for isotopically substituted forms of H2O --
_tReferences --
_tExercises --
_t3. Spherical symmetry and the full rotation group --
_t3.1. Hydrogen-like orbitals --
_t3.2. Representations of the full rotation group --
_t3.3. The character of a rotation --
_t3.4. Decomposition of D(l) in a non-spherical environment --
_t3.5. Direct-product groups and representations --
_t3.6. General properties of direct-product groups and representations --
_t3.7. Selection rules for matrix elements --
_t3.8. General representations of the full rotation group --
_tReferences --
_tExercises --
_t4. Crystal-field theory --
_t4.1. Splitting of d-orbital degeneracy by a crystal field --
_t4.2. Multi-electron systems --
_t4.3. Jahn---Teller effects --
_tReferences --
_tExercises --
_t5. Electron spin and angular momentum --
_t5.1. Pauli spin matrices --
_t5.2. Measurement of spin.
505 0 0 _aContents note continued: 5.3. Irreducible representations of half-integer angular momentum --
_t5.4. Multi-electron spin-orbital states --
_t5.5. The L---S-coupling scheme --
_t5.6. Generating angular-momentum eigenstates --
_t5.7. Spin---orbit interaction --
_t5.8. Crystal double groups --
_t5.9. The Zeeman effect (weak-magnetic-field case) --
_tReferences --
_tExercises --
_t6. Molecular electronic structure: The LCAO model --
_t6.1.N-electron systems --
_t6.2. Empirical LCAO models --
_t6.3. Parameterized LCAO models --
_t6.4. An example: The electronic structure of squarene --
_t6.5. The electronic structure of H2O --
_tReferences --
_tExercises --
_t7. Electronic states of diatomic molecules --
_t7.1. Bonding and antibonding states: Symmetry functions --
_t7.2. The "building-up" of molecular orbitals for diatomic molecules --
_t7.3. Heteronuclear diatomic molecules --
_tExercises --
_t8. Transition-metal complexes --
_t8.1. An octahedral complex --
_t8.2.A tetrahedral complex --
_tReferences --
_tExercises.
505 0 0 _aContents note continued: 9. Space groups and crystalline solids --
_t9.1. Definitions --
_t9.2. Space groups --
_t9.3. The reciprocal lattice --
_t9.4. Brillouin zones --
_t9.5. Bloch waves and symmorphic groups --
_t9.6. Point-group symmetry of Bloch waves --
_t9.7. The space group of the k-vector, gsk --
_t9.8. Irreducible representations of gsk --
_t9.9.Compatibility of the irreducible representations of gk --
_t9.10. Energy bands in the plane-wave approximation --
_tReferences --
_tExercises --
_t10. Application of space-group theory: Energy bands for the perovskite structure --
_t10.1. The structure of the ABO3 perovskites --
_t10.2. Tight-binding wavefunctions --
_t10.3. The group of the wawvector, gk --
_t10.4. Irreducible representations for the perovskite energy bands --
_t10.5. LCAO energies for arbitrary k --
_t10.6. Characteristics of the perovskite bands --
_tReferences --
_tExercises --
_t11. Applications of space-group theory: Lattice vibrations --
_t11.1. Eigenvalue equations for lattice vibrations.
505 0 0 _aContents note continued: 11.2. Acoustic-phonon branches --
_t11.3. Optical branches: Two atoms per unit cell --
_t11.4. Lattice vibrations for the perovskite structure --
_t11.5. Localized vibrations --
_tReferences --
_tExercises --
_t12. Time reversal and magnetic groups --
_t12.1. Time reversal in quantum mechanics --
_t12.2. The effect of T on an electron wavefunction --
_t12.3. Time reversal with an external field --
_t12.4. Time-reversal degeneracy and energy bands --
_t12.5. Magnetic crystal groups --
_t12.6. Co-representations for groups with time-reversal operators --
_t12.7. Degeneracies due to time-reversal symmetry --
_tReferences --
_tExercises --
_t13. Graphene --
_t13.1. Graphene structure and energy bands --
_t13.2. The analogy with the Dirac relativistic theory for massless particles --
_t13.3. Graphene lattice vibrations --
_tReferences --
_tExercises --
_t14. Carbon nanotubes --
_t14.1.A description of carbon nanotubes --
_t14.2. Group theory of nanotubes --
_t14.3. One-dimensional nanotube energy bands.
505 0 0 _aContents note continued: 14.4. Metallic and semiconducting nanotubes --
_t14.5. The nanotube density of states --
_t14.6. Curvature and energy gaps --
_tReferences --
_tExercises.
520 0 _a"The majority of all knowledge concerning atoms, molecules, and solids has been derived from applications of group theory. Taking a unique, applications-oriented approach, this book gives readers the tools needed to analyze any atomic, molecular, or crystalline solid system"--
_cProvided by publisher.
530 _a2
_ub
650 0 _aSolids
_xMathematical models.
650 0 _aMolecular structure.
650 0 _aAtomic structure.
650 0 _aGroup theory.
655 1 _aElectronic Books.
856 4 0 _uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=638097&site=eds-live&custid=s3260518
_zClick to access digital title | log in using your CIU ID number and my.ciu.edu password
942 _cOB
_eEB
_hQC
_m2014
_QOL
_2LOC
999 _c99821
_d99821
902 _a1
_bCynthia Snell
_c1
_dCynthia Snell