000 | 07196cam a2200457Ki 4500 | ||
---|---|---|---|
001 | ocn894227095 | ||
003 | OCoLC | ||
005 | 20240726105424.0 | ||
008 | 141103s2014 enka ob 001 0 eng d | ||
020 |
_a9781107472068 _q((electronic)l(electronic)ctronic) |
||
020 |
_a9781139236294 _q((electronic)l(electronic)ctronic) |
||
040 |
_aNT _beng _erda _epn _cNT _dCAMBR _dYDXCP _dWAU _dOCLCQ _dUMI _dDEBBG _dEUX _dCN3GA _dCDX _dOCLCF _dCOO _dE7B _dUIU _dDEBSZ _dOCLCQ _dCEF _dOCLCQ _dWYU _dTKN _dOCLCQ _dAU@ _dOCLCQ _dOL _dOCLCO |
||
049 | _aMAIN | ||
050 | 0 | 4 |
_aQC176 _b.A675 2014 |
066 | _cZsym | ||
100 | 1 |
_aWolfram, Thomas, _d1936- _e1 |
|
245 | 1 | 0 | _aApplications of group theory to atoms, molecules, and solids /Thomas Wolfram, Şinasi Ellialtioğlu. |
260 |
_aCambridge : _bCambridge University Press, _c(c)2014. |
||
300 |
_a1 online resource (xii, 471 pages) : _billustrations |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_adata file _2rda |
||
504 | _a2 | ||
505 | 0 | 0 |
_aMachine generated contents note: 1. Introductory example: Squarene -- _t1.1. In-plane molecular vibrations of squarene -- _t1.2. Reducible and irreducible representations of a group -- _t1.3. Eigenvalues and eigenvectors -- _t1.4. Construction of the force-constant matrix from the eigenvalues -- _t1.5. Optical properties -- _tReferences -- _tExercises -- _t2. Molecular vibrations of isotopically substituted KB2 molecules -- _t2.1. Step 1: Identify the point group and its symmetry operations -- _t2.2. Step 2: Specify the coordinate system and the basis functions -- _t2.3. Step 3: Determine the effects of the symmetry operations on the basis functions -- _t2.4. Step 4: Construct the matrix representations for each element of the group using the basis functions -- _t2.5. Step 5: Determine the number and types of irreducible representations -- _t2.6. Step 6: Analyze the information contained in the decompositions -- _t2.7. Step 7: Generate the symmetry functions -- _t2.8. Step 8: Diagonalize the matrix eigenvalue equation. |
505 | 0 | 0 |
_aContents note continued: 2.9. Constructing the force-constant matrix -- _t2.10. Green's function theory of isotopic molecular vibrations -- _t2.11. Results for isotopically substituted forms of H2O -- _tReferences -- _tExercises -- _t3. Spherical symmetry and the full rotation group -- _t3.1. Hydrogen-like orbitals -- _t3.2. Representations of the full rotation group -- _t3.3. The character of a rotation -- _t3.4. Decomposition of D(l) in a non-spherical environment -- _t3.5. Direct-product groups and representations -- _t3.6. General properties of direct-product groups and representations -- _t3.7. Selection rules for matrix elements -- _t3.8. General representations of the full rotation group -- _tReferences -- _tExercises -- _t4. Crystal-field theory -- _t4.1. Splitting of d-orbital degeneracy by a crystal field -- _t4.2. Multi-electron systems -- _t4.3. Jahn---Teller effects -- _tReferences -- _tExercises -- _t5. Electron spin and angular momentum -- _t5.1. Pauli spin matrices -- _t5.2. Measurement of spin. |
505 | 0 | 0 |
_aContents note continued: 5.3. Irreducible representations of half-integer angular momentum -- _t5.4. Multi-electron spin-orbital states -- _t5.5. The L---S-coupling scheme -- _t5.6. Generating angular-momentum eigenstates -- _t5.7. Spin---orbit interaction -- _t5.8. Crystal double groups -- _t5.9. The Zeeman effect (weak-magnetic-field case) -- _tReferences -- _tExercises -- _t6. Molecular electronic structure: The LCAO model -- _t6.1.N-electron systems -- _t6.2. Empirical LCAO models -- _t6.3. Parameterized LCAO models -- _t6.4. An example: The electronic structure of squarene -- _t6.5. The electronic structure of H2O -- _tReferences -- _tExercises -- _t7. Electronic states of diatomic molecules -- _t7.1. Bonding and antibonding states: Symmetry functions -- _t7.2. The "building-up" of molecular orbitals for diatomic molecules -- _t7.3. Heteronuclear diatomic molecules -- _tExercises -- _t8. Transition-metal complexes -- _t8.1. An octahedral complex -- _t8.2.A tetrahedral complex -- _tReferences -- _tExercises. |
505 | 0 | 0 |
_aContents note continued: 9. Space groups and crystalline solids -- _t9.1. Definitions -- _t9.2. Space groups -- _t9.3. The reciprocal lattice -- _t9.4. Brillouin zones -- _t9.5. Bloch waves and symmorphic groups -- _t9.6. Point-group symmetry of Bloch waves -- _t9.7. The space group of the k-vector, gsk -- _t9.8. Irreducible representations of gsk -- _t9.9.Compatibility of the irreducible representations of gk -- _t9.10. Energy bands in the plane-wave approximation -- _tReferences -- _tExercises -- _t10. Application of space-group theory: Energy bands for the perovskite structure -- _t10.1. The structure of the ABO3 perovskites -- _t10.2. Tight-binding wavefunctions -- _t10.3. The group of the wawvector, gk -- _t10.4. Irreducible representations for the perovskite energy bands -- _t10.5. LCAO energies for arbitrary k -- _t10.6. Characteristics of the perovskite bands -- _tReferences -- _tExercises -- _t11. Applications of space-group theory: Lattice vibrations -- _t11.1. Eigenvalue equations for lattice vibrations. |
505 | 0 | 0 |
_aContents note continued: 11.2. Acoustic-phonon branches -- _t11.3. Optical branches: Two atoms per unit cell -- _t11.4. Lattice vibrations for the perovskite structure -- _t11.5. Localized vibrations -- _tReferences -- _tExercises -- _t12. Time reversal and magnetic groups -- _t12.1. Time reversal in quantum mechanics -- _t12.2. The effect of T on an electron wavefunction -- _t12.3. Time reversal with an external field -- _t12.4. Time-reversal degeneracy and energy bands -- _t12.5. Magnetic crystal groups -- _t12.6. Co-representations for groups with time-reversal operators -- _t12.7. Degeneracies due to time-reversal symmetry -- _tReferences -- _tExercises -- _t13. Graphene -- _t13.1. Graphene structure and energy bands -- _t13.2. The analogy with the Dirac relativistic theory for massless particles -- _t13.3. Graphene lattice vibrations -- _tReferences -- _tExercises -- _t14. Carbon nanotubes -- _t14.1.A description of carbon nanotubes -- _t14.2. Group theory of nanotubes -- _t14.3. One-dimensional nanotube energy bands. |
505 | 0 | 0 |
_aContents note continued: 14.4. Metallic and semiconducting nanotubes -- _t14.5. The nanotube density of states -- _t14.6. Curvature and energy gaps -- _tReferences -- _tExercises. |
520 | 0 |
_a"The majority of all knowledge concerning atoms, molecules, and solids has been derived from applications of group theory. Taking a unique, applications-oriented approach, this book gives readers the tools needed to analyze any atomic, molecular, or crystalline solid system"-- _cProvided by publisher. |
|
530 |
_a2 _ub |
||
650 | 0 |
_aSolids _xMathematical models. |
|
650 | 0 | _aMolecular structure. | |
650 | 0 | _aAtomic structure. | |
650 | 0 | _aGroup theory. | |
655 | 1 | _aElectronic Books. | |
856 | 4 | 0 |
_uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=638097&site=eds-live&custid=s3260518 _zClick to access digital title | log in using your CIU ID number and my.ciu.edu password |
942 |
_cOB _eEB _hQC _m2014 _QOL _2LOC |
||
999 |
_c99821 _d99821 |
||
902 |
_a1 _bCynthia Snell _c1 _dCynthia Snell |