000 | 02949cam a2200457Mi 4500 | ||
---|---|---|---|
001 | ocn856432113 | ||
003 | OCoLC | ||
005 | 20240726105409.0 | ||
008 | 130718s2013 enk ob 001 0 eng d | ||
040 |
_aNhCcYBP _beng _epn _erda _cN15 _dOCLCO _dYDXCP _dNT _dMHW _dCDX _dCAMBR _dIDEBK _dMEAUC _dEBLCP _dCOO _dUMI _dDEBSZ _dDEBBG _dOCLCQ _dOCLCF _dOCLCQ |
||
016 | 7 |
_a016415941 _2Uk |
|
020 |
_a9781139192576 _q((electronic)l(electronic)ctronic) |
||
020 |
_a9781461944799 _q((electronic)l(electronic)ctronic) |
||
020 | _a9781107274945 | ||
020 | _a9781107272149 | ||
050 | 0 | 4 |
_aQA177 _b.M395 2013 |
049 | _aMAIN | ||
100 | 1 |
_aBray, John N. _e1 |
|
245 | 1 | 0 | _aThe maximal subgroups of the low-dimensional finite classical groups /John N. Bray, Derek F. Holt, Colva M. Roney-Dougal. |
260 |
_aCambridge : _bCambridge University Press, _c(c)2013. |
||
300 | _a1 online resource. | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_adata file _2rda |
||
490 | 1 |
_aLondon Mathematical Society lecture note series ; _v407 |
|
504 | _a2 | ||
520 | 0 | _aClassifies the maximal subgroups of the finite groups of Lie type up to dimension 12, using theoretical and computational methods. | |
505 | 0 | 0 | _aCover; Contents; Foreword by Martin Liebeck; Preface; 1 Introduction; 1.1 Background; 1.2 Notation; 1.3 Some basic group theory; 1.4 Finite fields and perfect fields; 1.5 Classical forms; 1.6 The classical groups and their orders; 1.7 Outer automorphisms of classical groups; 1.8 Representation theory; 1.9 Tensor products; 1.10 Small dimensions and exceptional isomorphisms; 1.11 Representations of simple groups; 1.12 The natural representations of the classical groups; 1.13 Some results from number theory; 2 The main theorem and the types of geometric subgroups; 2.1 The main theorem. |
505 | 0 | 0 | _a5.11 Summary of the S2*-maximals6 Containments involving S-subgroups; 6.1 Introduction; 6.2 Containments between S1- and S2*-maximal subgroups; 6.3 Containments between geometric and S*-maximal subgroups; 7 Maximal subgroups of exceptional groups; 7.1 Introduction; 7.2 The maximal subgroups of Sp4(2e) and extensions; 7.3 The maximal subgroups of Sz(q) and extensions; 7.4 The maximal subgroups of G2(2e) and extensions; 8 Tables; 8.1 Description of the tables; 8.2 The tables; References; Index of Definitions. |
530 |
_a2 _ub |
||
650 | 0 | _aFinite groups. | |
650 | 0 | _aMaximal subgroups. | |
655 | 1 | _aElectronic Books. | |
700 | 1 | _aHolt, Derek F. | |
700 | 1 | _aRoney-Dougal, Colva M. | |
856 | 4 | 0 |
_uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=592736&site=eds-live&custid=s3260518 _zClick to access digital title | log in using your CIU ID number and my.ciu.edu password |
942 |
_cOB _D _eEB _hQA _m2013 _QOL _R _x _8NFIC _2LOC |
||
994 |
_a92 _bNT |
||
999 |
_c99030 _d99030 |
||
902 |
_a1 _bCynthia Snell _c1 _dCynthia Snell |