000 04506cam a2200421Ki 4500
001 ocn847527208
003 OCoLC
005 20240726105353.0
008 130610s2002 enka ob 001 0 eng d
040 _aNT
_beng
_epn
_erda
_cNT
_dCAMBR
_dIDEBK
_dOCLCF
_dYDXCP
_dEBLCP
_dDEBSZ
_dEUX
_dOCLCQ
020 _a9781107089525
_q((electronic)l(electronic)ctronic)
020 _a9781107326002
_q((electronic)l(electronic)ctronic)
020 _a9781107095830
050 0 4 _aQA612
_b.A444 2002
049 _aMAIN
100 1 _aMagurn, Bruce A.
_e1
245 1 0 _aAn algebraic introduction to K-theoryBruce A. Magurn.
260 _aCambridge, UK ;
_aNew York :
_bCambridge University Press,
_c(c)2002.
300 _a1 online resource (xiv, 676 pages) :
_billustrations.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _adata file
_2rda
490 1 _aEncyclopedia of mathematics and its applications ;
_vv. 87
504 _a2
520 1 _a"The presentation is self-contained, with all the necessary background and proofs, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry.
520 8 _aThe prerequisites are minimal: just a first semester of algebra (including Galois theory and modules over a principal ideal domain). No experience with homological algebra, analysis, geometry, number theory, or topology is assumed. The author has.
520 8 _aSelected topics can be used to construct a variety of one-semester courses; coverage of the entire text requires a full year."--Jacket.
505 0 0 _tGroups of Modules: K[subscript 0. --
_tFree Modules --
_tBases --
_tMatrix Representations --
_tAbsence of Dimension --
_tProjective Modules --
_tDirect Summands --
_tSummands of Free Modules --
_tGrothendieck Groups --
_tSemigroups of Isomorphism Classes --
_tSemigroups to Groups --
_tGrothendieck Groups --
_tResolutions --
_tStability for Projective Modules --
_tAdding Copies of R --
_tStably Free Modules --
_tWhen Stably Free Modules Are Free --
_tStable Rank --
_tDimensions of a Ring --
_tMultiplying Modules --
_tSemirings --
_tBurnside Rings --
_tTensor Products of Modules --
_tChange of Rings --
_tK[subscript 0. of Related Rings --
_tG[subscript 0. of Related Rings --
_tK[subscript 0. as a Functor --
_tThe Jacobson Radical --
_tLocalization --
_tSources of K[subscript 0. --
_tNumber Theory --
_tAlgebraic Integers --
_tDedekind Domains --
_tIdeal Class Groups --
_tExtensions and Norms --
_tK[subscript 0. and G[subscript 0. of Dedekind Domains --
_tGroup Representation Theory --
_tLinear Representations --
_tRepresenting Finite Groups Over Fields --
_tSemisimple Rings --
_tCharacters --
_tGroups of Matrices: K[subscript 1. --
_tDefinition of K[subscript 1. --
_tElementary Matrices --
_tCommutators and K[subscript 1.(R) --
_tDeterminants --
_tThe Bass K[subscript 1. of a Category --
_tStability for K[subscript 1.(R) --
_tSurjective Stability --
_tInjective Stability --
_tRelative K[subscript 1. --
_tCongruence Subgroups of GL[subscript n](R) --
_tCongruence Subgroups of SL[subscript n](R) --
_tMennicke Symbols --
_tRelations Among Matrices: K[subscript 2. --
_tK[subscript 2.(R) and Steinberg Symbols --
_tDefinition and Properties of K[subscript 2.(R) --
_tElements of St(R) and K[subscript 2.(R) --
_tExact Sequences --
_tThe Relative Sequence --
_tExcision and the Mayer-Vietoris Sequence --
_tThe Localization Sequence --
_tUniversal Algebras --
_tPresentation of Algebras --
_tGraded Rings --
_tThe Tensor Algebra --
_tSymmetric and Exterior Algebras --
_tThe Milnor Ring --
_tTame Symbols --
_tNorms on Milnor K-Theory --
_tMatsumoto's Theorem --
_tSources of K[subscript 2. --
_tSymbols in Arithmetic --
_tHilbert Symbols --
_tMetric Completion of Fields --
_tThe p-Adic Numbers and Quadratic Reciprocity --
_tLocal Fields and Norm Residue Symbols --
_tBrauer Groups --
_tThe Brauer Group of a Field --
_tSplitting Fields --
_tTwisted Group Rings --
_tThe K[subscript 2. Connection --
_tA Sets, Classes, Functions --
_tChain Conditions, Composition Series
530 _a2
_ub
650 0 _aK-theory.
650 4 _aK-theory.
655 1 _aElectronic Books.
856 4 0 _uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569371&site=eds-live&custid=s3260518
_zClick to access digital title | log in using your CIU ID number and my.ciu.edu password
942 _cOB
_D
_eEB
_hQA.
_m2002
_QOL
_R
_x
_8NFIC
_2LOC
994 _a92
_bNT
999 _c98127
_d98127
902 _a1
_bCynthia Snell
_c1
_dCynthia Snell