000 04928nam a2200373Ki 4500
001 ocn839304256
003 OCoLC
005 20240726105348.0
008 130415s2002 enka ob 001 0 eng d
040 _aNT
_beng
_erda
_cNT
020 _a9781107360747
_q((electronic)l(electronic)ctronic)l((electronic)l(electronic)ctronic)ctronic bk.
050 0 4 _aQA323
_b.A874 2002
049 _aNTA
100 1 _aSaloff-Coste, L.
_e1
245 1 0 _aAspects of Sobolev-type inequalitiesLaurent Saloff-Coste.
260 _aCambridge ;
_aNew York :
_bCambridge University Press,
_c(c)2002.
300 _a1 online resource (x, 190 pages) :
_billustrations.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _adata file
_2rda
490 1 _aLondon Mathematical Society lecture note series ;
_v289
504 _a2
505 0 0 _tSobolev inequalities in R[superscript n] --
_tSobolev inequalities --
_tThe proof due to Gagliardo and to Nirenberg --
_tp = 1 implies p [greater than or equal] 1 --
_tRiesz potentials --
_tAnother approach to Sobolev inequalities --
_tMarcinkiewicz interpolation theorem --
_tProof of Sobolev Theorem 1.2.1 --
_tBest constants --
_tThe case p = 1: isoperimetry --
_tA complete proof with best constant for p = 1 --
_tThe case p > 1 --
_tSome other Sobolev inequalities --
_tThe case p > n --
_tThe case p = n --
_tHigher derivatives --
_tSobolev --
_tPoincare inequalities on balls --
_tThe Neumann and Dirichlet eigenvalues --
_tPoincare inequalities on Euclidean balls --
_tSobolev --
_tPoincare inequalities --
_tMoser's elliptic Harnack inequality --
_tElliptic operators in divergence form --
_tDivergence form --
_tUniform ellipticity --
_tA Sobolev-type inequality for Moser's iteration --
_tSubsolutions and supersolutions --
_tSubsolutions --
_tSupersolutions --
_tAn abstract lemma --
_tHarnack inequalities and continuity --
_tHarnack inequalities --
_tHolder continuity --
_tSobolev inequalities on manifolds --
_tNotation concerning Riemannian manifolds --
_tIsoperimetry --
_tSobolev inequalities and volume growth --
_tWeak and strong Sobolev inequalities --
_tExamples of weak Sobolev inequalities --
_t(S[superscript [theta] subscript r,s])-inequalities: the parameters q and v --
_tThe case 0 < q < [infinity] --
_tThe case 1 = [infinity] --
_tThe case -[infinity] < q < 0 --
_tIncreasing p --
_tLocal versions --
_tPseudo-Poincare inequalities --
_tPseudo-Poincare technique: local version --
_tLie groups --
_tPseudo-Poincare inequalities on Lie groups --
_tRicci [greater than or equal] 0 and maximal volume growth --
_tSobolev inequality in precompact regions --
_tTwo applications --
_tUltracontractivity --
_tNash inequality implies ultracontractivity --
_tThe converse --
_tGaussian heat kernel estimates --
_tThe Gaffney-Davies L[superscript 2. estimate --
_tComplex interpolation --
_tPointwise Gaussian upper bounds --
_tOn-diagonal lower bounds --
_tThe Rozenblum-Lieb-Cwikel inequality --
_tThe Schrodinger operator [Delta] --
_tV --
_tThe operator T[subscript V] = [Delta superscript -1.V --
_tThe Birman-Schwinger principle --
_tParabolic Harnack inequalities --
_tScale-invariant Harnack principle --
_tLocal Sobolev inequalities --
_tLocal Sobolev inequalities and volume growth --
_tMean value inequalities for subsolutions --
_tLocalized heat kernel upper bounds --
_tTime-derivative upper bounds --
_tMean value inequalities for supersolutions --
_tPoincare inequalities --
_tPoincare inequality and Sobolev inequality --
_tSome weighted Poincare inequalities --
_tWhitney-type coverings --
_tA maximal inequality and an application --
_tEnd of the proof of Theorem 5.3.4 --
_tHarnack inequalities and applications --
_tAn inequality for log u --
_tHarnack inequality for positive supersolutions --
_tHarnack inequalities for positive solutions --
_tHolder continuity --
_tLiouville theorems --
_tHeat kernel lower bounds --
_tTwo-sided heat kernel bounds --
_tThe parabolic Harnack principle --
_tPoincare, doubling, and Harnack --
_tStochastic completeness --
_tLocal Sobolev inequalities and the heat equation --
_tSelected applications of Theorem 5.5.1 --
_tUnimodular Lie groups --
_tHomogeneous spaces --
_tManifolds with Ricci curvature bounded below
520 0 _aFocusing on Poincaré, Nash and other Sobolev-type inequalities and their applications to the Laplace and heat diffusion equations on Riemannian manifolds, this text is an advanced graduate book that will also suit researchers.
530 _a2
_ub
650 0 _aSobolev spaces.
650 0 _aInequalities (Mathematics)
655 1 _aElectronic Books.
856 4 0 _uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552338&site=eds-live&custid=s3260518
_zClick to access digital title | log in using your CIU ID number and my.ciu.edu password
942 _cOB
_D
_eEB
_hQA
_m2002
_QOL
_R
_x
_8NFIC
_2LOC
994 _a02
_bNT
999 _c97883
_d97883
902 _a1
_bCynthia Snell
_c1
_dCynthia Snell