000 | 04928nam a2200373Ki 4500 | ||
---|---|---|---|
001 | ocn839304256 | ||
003 | OCoLC | ||
005 | 20240726105348.0 | ||
008 | 130415s2002 enka ob 001 0 eng d | ||
040 |
_aNT _beng _erda _cNT |
||
020 |
_a9781107360747 _q((electronic)l(electronic)ctronic)l((electronic)l(electronic)ctronic)ctronic bk. |
||
050 | 0 | 4 |
_aQA323 _b.A874 2002 |
049 | _aNTA | ||
100 | 1 |
_aSaloff-Coste, L. _e1 |
|
245 | 1 | 0 | _aAspects of Sobolev-type inequalitiesLaurent Saloff-Coste. |
260 |
_aCambridge ; _aNew York : _bCambridge University Press, _c(c)2002. |
||
300 |
_a1 online resource (x, 190 pages) : _billustrations. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_adata file _2rda |
||
490 | 1 |
_aLondon Mathematical Society lecture note series ; _v289 |
|
504 | _a2 | ||
505 | 0 | 0 |
_tSobolev inequalities in R[superscript n] -- _tSobolev inequalities -- _tThe proof due to Gagliardo and to Nirenberg -- _tp = 1 implies p [greater than or equal] 1 -- _tRiesz potentials -- _tAnother approach to Sobolev inequalities -- _tMarcinkiewicz interpolation theorem -- _tProof of Sobolev Theorem 1.2.1 -- _tBest constants -- _tThe case p = 1: isoperimetry -- _tA complete proof with best constant for p = 1 -- _tThe case p > 1 -- _tSome other Sobolev inequalities -- _tThe case p > n -- _tThe case p = n -- _tHigher derivatives -- _tSobolev -- _tPoincare inequalities on balls -- _tThe Neumann and Dirichlet eigenvalues -- _tPoincare inequalities on Euclidean balls -- _tSobolev -- _tPoincare inequalities -- _tMoser's elliptic Harnack inequality -- _tElliptic operators in divergence form -- _tDivergence form -- _tUniform ellipticity -- _tA Sobolev-type inequality for Moser's iteration -- _tSubsolutions and supersolutions -- _tSubsolutions -- _tSupersolutions -- _tAn abstract lemma -- _tHarnack inequalities and continuity -- _tHarnack inequalities -- _tHolder continuity -- _tSobolev inequalities on manifolds -- _tNotation concerning Riemannian manifolds -- _tIsoperimetry -- _tSobolev inequalities and volume growth -- _tWeak and strong Sobolev inequalities -- _tExamples of weak Sobolev inequalities -- _t(S[superscript [theta] subscript r,s])-inequalities: the parameters q and v -- _tThe case 0 < q < [infinity] -- _tThe case 1 = [infinity] -- _tThe case -[infinity] < q < 0 -- _tIncreasing p -- _tLocal versions -- _tPseudo-Poincare inequalities -- _tPseudo-Poincare technique: local version -- _tLie groups -- _tPseudo-Poincare inequalities on Lie groups -- _tRicci [greater than or equal] 0 and maximal volume growth -- _tSobolev inequality in precompact regions -- _tTwo applications -- _tUltracontractivity -- _tNash inequality implies ultracontractivity -- _tThe converse -- _tGaussian heat kernel estimates -- _tThe Gaffney-Davies L[superscript 2. estimate -- _tComplex interpolation -- _tPointwise Gaussian upper bounds -- _tOn-diagonal lower bounds -- _tThe Rozenblum-Lieb-Cwikel inequality -- _tThe Schrodinger operator [Delta] -- _tV -- _tThe operator T[subscript V] = [Delta superscript -1.V -- _tThe Birman-Schwinger principle -- _tParabolic Harnack inequalities -- _tScale-invariant Harnack principle -- _tLocal Sobolev inequalities -- _tLocal Sobolev inequalities and volume growth -- _tMean value inequalities for subsolutions -- _tLocalized heat kernel upper bounds -- _tTime-derivative upper bounds -- _tMean value inequalities for supersolutions -- _tPoincare inequalities -- _tPoincare inequality and Sobolev inequality -- _tSome weighted Poincare inequalities -- _tWhitney-type coverings -- _tA maximal inequality and an application -- _tEnd of the proof of Theorem 5.3.4 -- _tHarnack inequalities and applications -- _tAn inequality for log u -- _tHarnack inequality for positive supersolutions -- _tHarnack inequalities for positive solutions -- _tHolder continuity -- _tLiouville theorems -- _tHeat kernel lower bounds -- _tTwo-sided heat kernel bounds -- _tThe parabolic Harnack principle -- _tPoincare, doubling, and Harnack -- _tStochastic completeness -- _tLocal Sobolev inequalities and the heat equation -- _tSelected applications of Theorem 5.5.1 -- _tUnimodular Lie groups -- _tHomogeneous spaces -- _tManifolds with Ricci curvature bounded below |
520 | 0 | _aFocusing on Poincaré, Nash and other Sobolev-type inequalities and their applications to the Laplace and heat diffusion equations on Riemannian manifolds, this text is an advanced graduate book that will also suit researchers. | |
530 |
_a2 _ub |
||
650 | 0 | _aSobolev spaces. | |
650 | 0 | _aInequalities (Mathematics) | |
655 | 1 | _aElectronic Books. | |
856 | 4 | 0 |
_uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552338&site=eds-live&custid=s3260518 _zClick to access digital title | log in using your CIU ID number and my.ciu.edu password |
942 |
_cOB _D _eEB _hQA _m2002 _QOL _R _x _8NFIC _2LOC |
||
994 |
_a02 _bNT |
||
999 |
_c97883 _d97883 |
||
902 |
_a1 _bCynthia Snell _c1 _dCynthia Snell |