000 03326cam a2200409Mi 4500
001 on1036781636
003 OCoLC
005 20240726105052.0
008 180519s2018 nju o 000 0 eng d
040 _aEBLCP
_beng
_erda
_cEBLCP
_dJSTOR
_dCNCGM
_dOCLCF
_dIDB
_dNT
020 _a9781400890064
_q((electronic)l(electronic)ctronic)
050 0 4 _aTP248
_b.M654 2018
049 _aMAIN
100 1 _aZocchi, Giovanni.
_e1
245 1 0 _aMolecular machines
_ba materials science approach /
_cGoivanni Zocchi.
260 _aPrinceton :
_bPrinceton University Press,
_c(c)2018.
300 _a1 online resource (189 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _adata file
_2rda
500 _aDescription based upon print version of record.
504 _a2
505 0 0 _aCover; Title; Copyright; CONTENTS; Preface; Acknowledgments; Dedication; 1 Brownian Motion; 1.1 Random Walk; 1.2 Polymer as a Simple Random Walk; 1.3 Direct Calculation of p(R); 1.4 The Langevin Approach; 1.5 Correlation Functions; 1.6 Barrier Crossing; 1.7 What is Equilibrium?; 2 Statics of DNA Deformations; 2.1 Introduction; 2.2 DNA Melting; 2.3 Zipper Model; 2.4 Experimental Melting Curves; 2.5 Base Pairing and Base Stacking as Separate Degrees of Freedom; 2.6 Hamiltonian Formulation of the Zipper Model; 2.7 2 × 2Model: Cooperativity from Local Rules; 2.8 Nearest Neighbor Model
505 0 0 _a2.9 Connection to Nonlinear Dynamics2.10 Linear and Nonlinear Elasticity of DNA; 2.11 Bending Modulus and Persistence Length; 2.12 Measurements of DNA Elasticity: Long Molecules; 2.13 Measurements of DNA Elasticity: Short Molecules; 2.14 The Euler Instability; 2.15 The DNA Yield Transition; 3 Kinematics of Enzyme Action; 3.1 Introduction; 3.2 Michaelis-Menten Kinetics; 3.3 The Method of the DNA Springs; 3.4 Force and Elastic Energy in the Enzyme-DNA Chimeras; 3.5 Injection of Elastic Energy vs. Activity Modulation; 3.6 Connection to Nonlinear Dynamics: Two Coupled Nonlinear Springs
505 0 0 _a4 Dynamics of Enzyme Action4.1 Introduction; 4.2 Enzymes are Viscoelastic; 4.3 Nonlinearity of the Enzyme's Mechanics; 4.4 Timescales; 4.5 Enzymatic Cycle and Viscoelasticity: Motors; 4.6 Internal Dissipation; 4.7 Origin of the Restoring Force g; 4.8 Models Based on Chemical Kinetics (Fisher and Kolomeisky, 1999); 4.9 Different Levels of Microscopic Description; 4.10 Connection to Information Flow; 4.11 Normal Mode Analysis; 4.12 Many States of the Folded Protein: Spectroscopy; 4.13 Interesting Topics in Nonequilibrium Thermodynamics Relating to Enzyme Dynamics; Bibliography
505 0 0 _aChapter 1: Brownian MotionChapter 2: Statics of DNA Deformations; Chapter 3: Kinematics of Enzyme Action; Chapter 4: Dynamics of Enzyme Action; Index
530 _a2
_ub
650 0 _aMolecular machinery.
650 0 _aNanoscience.
650 0 _aNanotechnology.
655 1 _aElectronic Books.
856 4 0 _uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1682203&site=eds-live&custid=s3260518
_zClick to access digital title | log in using your CIU ID number and my.ciu.edu password
942 _cOB
_D
_eEB
_hTP..
_m2018
_QOL
_R
_x
_8NFIC
_2LOC
994 _a92
_bNT
999 _c88007
_d88007
902 _a1
_bCynthia Snell
_c1
_dCynthia Snell