000 03328cam a2200385Mi 4500
001 ocn949754095
003 OCoLC
005 20240726105018.0
008 981110t19981968nju eob 000 0 eng d
040 _aIDEBK
_beng
_erda
_cIDEBK
_dNT
_dJSTOR
_dOCLCF
_dYDXCP
_dEBLCP
020 _a9781400882809
_q((electronic)l(electronic)ctronic)
050 0 4 _aQA247
_b.A444 1998
049 _aMAIN
100 1 _aWeyl, Hermann,
_d1885-1955.
_e1
245 1 0 _aAlgebraic theory of numbersby Hermann Weyl.
260 _aPrinceton, N. J. :
_bPrinceton University Press,
_c(c)1968.
300 _a1 online resource (ix, 223 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _adata file
_2rda
490 1 _aPrinceton landmarks in mathematics and physics
504 _a2
505 0 0 _aCover; Title; Copyright; CONTENTS; Chapter I. ALGEBRAIC FIELDS; 1. Finite field. Norm, trace, discriminant; 2. Tower. Analysis of the field equation; 3. Simple extension; 4. Relative trace, norm and discriminant; 5. Removal of the hypothesis of separability; 6. The Galois case; 7. Consecutive extensions replaced by a single one; 8. Strictly finite field; 9. Adjunction of Indeterminate; Chapter II. THEORY OF DIVISIBILITY (KRONECKER, DEDEKIND); 1. Integers; 2. Our disbelief in Ideals; 3. The axioms; 4. Consequences; 5. Integrity in ϰ(x,y,..) over k(x,y,..); 6. Kronecker's theory
505 0 0 _a7. The fundamental lemma8. A batch of simple propositions; 9. Relative Norm of a Divisor; 10. The Dedekind case; 11. Kronecker and Dedekind; Chapter III. LOCAL PRIMADIC ANALYSIS (KUMMER, HENSEL); 1. Quadratic number field; 2. Kummer's theory: decomposition; 3. Kummer's theory: discriminant; 4. Prime cyclotomic fields; 5. Program; 6. p-adic and y-adic numbers; 7. ϰ(y) and ϰ (J); 8. Discriminant; 9. Relative discriminant; 10. Hilbert's theory of Galois fields. Artin symbol; 11. Cyclotomlc field and quadratic law of reciprocity; 12. General cyclotomic fields; Chapter IV. ALGEBRAIC NUMBER FIELD
505 0 0 _a1. Lattices (old-fashioned)2. Field basis and basis of an ideal; 3. Norm and number of residues; 4. Euler's function and Fermat's theorem; 5. A new viewpoint; 6. Minkowski's geometric principle; 7. A fundamental inequality and its consequences: existence of ramification ideals, classes of ideals; 8. The Dirichlet-Minkowski-Hasse-Chevalley construction of units; 9. The structure of the group of units; 10. Finite Abelian groups and their characters; 11. Asymptotic equi-distribution of ideals over their classes; 12. ζ-function and related Dirichlet series
505 0 0 _a13. Prime numbers in residue classes modulo m14. ζ-function of quadratic fields, and their application; 15. Norm residues in quadratic fields; 16. General norm residue symbol and the theory of class fields; Amendments
530 _a2
_ub
650 0 _aAlgebraic number theory.
655 1 _aElectronic Books.
856 4 0 _uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1204558&site=eds-live&custid=s3260518
_zClick to access digital title | log in using your CIU ID number and my.ciu.edu password
942 _cOB
_D
_eEB
_hQA
_m1998, c1968
_QOL
_R
_x
_8NFIC
_2LOC
994 _a92
_bNT
999 _c85969
_d85969
902 _a1
_bCynthia Snell
_c1
_dCynthia Snell