000 | 03328cam a2200385Mi 4500 | ||
---|---|---|---|
001 | ocn949754095 | ||
003 | OCoLC | ||
005 | 20240726105018.0 | ||
008 | 981110t19981968nju eob 000 0 eng d | ||
040 |
_aIDEBK _beng _erda _cIDEBK _dNT _dJSTOR _dOCLCF _dYDXCP _dEBLCP |
||
020 |
_a9781400882809 _q((electronic)l(electronic)ctronic) |
||
050 | 0 | 4 |
_aQA247 _b.A444 1998 |
049 | _aMAIN | ||
100 | 1 |
_aWeyl, Hermann, _d1885-1955. _e1 |
|
245 | 1 | 0 | _aAlgebraic theory of numbersby Hermann Weyl. |
260 |
_aPrinceton, N. J. : _bPrinceton University Press, _c(c)1968. |
||
300 | _a1 online resource (ix, 223 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_adata file _2rda |
||
490 | 1 | _aPrinceton landmarks in mathematics and physics | |
504 | _a2 | ||
505 | 0 | 0 | _aCover; Title; Copyright; CONTENTS; Chapter I. ALGEBRAIC FIELDS; 1. Finite field. Norm, trace, discriminant; 2. Tower. Analysis of the field equation; 3. Simple extension; 4. Relative trace, norm and discriminant; 5. Removal of the hypothesis of separability; 6. The Galois case; 7. Consecutive extensions replaced by a single one; 8. Strictly finite field; 9. Adjunction of Indeterminate; Chapter II. THEORY OF DIVISIBILITY (KRONECKER, DEDEKIND); 1. Integers; 2. Our disbelief in Ideals; 3. The axioms; 4. Consequences; 5. Integrity in ϰ(x,y,..) over k(x,y,..); 6. Kronecker's theory |
505 | 0 | 0 | _a7. The fundamental lemma8. A batch of simple propositions; 9. Relative Norm of a Divisor; 10. The Dedekind case; 11. Kronecker and Dedekind; Chapter III. LOCAL PRIMADIC ANALYSIS (KUMMER, HENSEL); 1. Quadratic number field; 2. Kummer's theory: decomposition; 3. Kummer's theory: discriminant; 4. Prime cyclotomic fields; 5. Program; 6. p-adic and y-adic numbers; 7. ϰ(y) and ϰ (J); 8. Discriminant; 9. Relative discriminant; 10. Hilbert's theory of Galois fields. Artin symbol; 11. Cyclotomlc field and quadratic law of reciprocity; 12. General cyclotomic fields; Chapter IV. ALGEBRAIC NUMBER FIELD |
505 | 0 | 0 | _a1. Lattices (old-fashioned)2. Field basis and basis of an ideal; 3. Norm and number of residues; 4. Euler's function and Fermat's theorem; 5. A new viewpoint; 6. Minkowski's geometric principle; 7. A fundamental inequality and its consequences: existence of ramification ideals, classes of ideals; 8. The Dirichlet-Minkowski-Hasse-Chevalley construction of units; 9. The structure of the group of units; 10. Finite Abelian groups and their characters; 11. Asymptotic equi-distribution of ideals over their classes; 12. ζ-function and related Dirichlet series |
505 | 0 | 0 | _a13. Prime numbers in residue classes modulo m14. ζ-function of quadratic fields, and their application; 15. Norm residues in quadratic fields; 16. General norm residue symbol and the theory of class fields; Amendments |
530 |
_a2 _ub |
||
650 | 0 | _aAlgebraic number theory. | |
655 | 1 | _aElectronic Books. | |
856 | 4 | 0 |
_uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1204558&site=eds-live&custid=s3260518 _zClick to access digital title | log in using your CIU ID number and my.ciu.edu password |
942 |
_cOB _D _eEB _hQA _m1998, c1968 _QOL _R _x _8NFIC _2LOC |
||
994 |
_a92 _bNT |
||
999 |
_c85969 _d85969 |
||
902 |
_a1 _bCynthia Snell _c1 _dCynthia Snell |