000 02430cam a2200433Ii 4500
001 ocn903442327
003 OCoLC
005 20240726104944.0
008 150214s2015 nju o 000 0 eng d
040 _aEBLCP
_beng
_epn
_erda
_cEBLCP
_dOCLCQ
_dDEBSZ
_dJSTOR
_dYDXCP
_dNT
020 _a9781400871339
_q((electronic)l(electronic)ctronic)
029 1 _aDEBSZ
_b427581982
029 1 _aNLGGC
_b393260771
050 0 4 _aQA403
_b.F687 2015
050 0 4 _aQA247
049 _aNTA
100 1 _aTaibleson, M. H.
_e1
245 1 0 _aFourier analysis on local fields (MN-15)M.H. Taibleson.
260 _aPrinceton :
_bPrinceton University Press,
_c(c)2015.
300 _a1 online resource (308 pages).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _adata file
_2rda
490 1 _aMathematical notes
504 _a2
505 0 0 _aPreface; Introduction; Table of Contents; VII. Conjugate Systems of Regular Functions and an F. and M. Riesz Theorem.
520 0 _aThis book presents a development of the basic facts about harmonic analysis on local fields and the n-dimensional vector spaces over these fields. It focuses almost exclusively on the analogy between the local field and Euclidean cases, with respect to the form of statements, the manner of proof, and the variety of applications. The force of the analogy between the local field and Euclidean cases rests in the relationship of the field structures that underlie the respective cases. A complete classification of locally compact, non-discrete fields gives us two examples of connected fields (real and complex numbers); the rest are local fields (p-adic numbers, p-series fields, and their algebraic extensions). The local fields are studied in an effort to extend knowledge of the reals and complexes as locally compact fields.
530 _a2
_ub
650 0 _aFourier analysis.
650 0 _aLocal fields (Algebra)
650 4 _aFourier analysis.
650 4 _aLocal fields (Algebra)
655 1 _aElectronic Books.
856 4 0 _uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=948666&site=eds-live&custid=s3260518
_zClick to access digital title | log in using your CIU ID number and my.ciu.edu password
942 _cOB
_D
_eEB
_hQA.
_m2015
_QOL
_R
_x
_8NFIC
_2LOC
994 _a02
_bNT
999 _c83999
_d83999
902 _a1
_bCynthia Snell
_c1
_dCynthia Snell