000 05497cam a22004218i 4500
001 on1264730485
003 OCoLC
005 20240726104841.0
008 210816s2021 nyu ob 001 0 eng
010 _a2021038486
040 _aDLC
_beng
_erda
_cDLC
_dOCLCO
_dEBLCP
_dOCLCF
_dNT
020 _a9781536198492
_q((electronic)l(electronic)ctronic)
042 _apcc
050 0 0 _aQA274
_b.A675 2021
049 _aMAIN
245 1 0 _aApplications of Lévy processes /edited by Oleg Kudryavtsev, Southern Federal University, Rostov-on-Don, Russia; Rostov Branch of the Russian Customs Academy, Rostov-on-Don, Russia, Antonino Zanette, Department of Economics and Statistics, University of Udine, Udine, Italy.
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _adata file
_2rda
490 0 _aMathematics research developments
504 _a2
520 0 _a"Lévy processes have found applications in various fields, including physics, chemistry, long-term climate change, telephone communication, and finance. The most famous Lévy process in finance is the Black-Scholes model. This book presents important financial applications of Lévy processes. The Editors consider jump-diffusion and pure non-Gaussian Lévy processes, the multi-dimensional Black-Scholes model, and regime-switching Lévy models. This book is comprised of seven chapters that focus on different approaches to solving applied problems under Lévy processes: Monte Carlo simulations, machine learning, the frame projection method, dynamic programming, the Fourier cosine series expansion, finite difference schemes, and the Wiener-Hopf factorization. Various numerical examples are carefully presented in tables and figures to illustrate the methods designed in the book"--
_cProvided by publisher.
505 0 0 _aIntro --
_tAPPLICATIONS OFLÉVY PROCESSES --
_tAPPLICATIONS OFLÉVY PROCESSES --
_tCONTENTS --
_tPREFACE --
_tChapter 1VARIANCE REDUCTION APPLIED TOMACHINE LEARNING FOR PRICINGBERMUDAN/AMERICAN OPTIONSIN HIGH DIMENSION --
_tAbstract --
_t1. INTRODUCTION --
_t2. AMERICAN OPTIONS IN THE MULTI-DIMENSIONAL BLACK-SCHOLES MODEL --
_t3. MACHINE LEARNING FOR AMERICAN OPTIONSIN THE MULTI-DIMENSIONAL BLACK-SCHOLESMODEL --
_t3.1. Gaussian Process Regression --
_t3.2. Machine Learning Exact Integration for European Options --
_t3.3. Machine Learning Control Variate Algorithm for AmericanOptions --
_t3.3.1. The GPR Monte CarloMethod
505 0 0 _a3.3.2. The GPR Monte Carlo Control Variate Method --
_t3.3.3. The Control Variate for GPR-Tree and GRP-EI --
_t4. NUMERICAL RESULTS --
_t4.1. Geometric and Arithmetic Basket Put Options --
_t4.2. Call on theMaximum Option --
_t4.3. Variance Reduction --
_tCONCLUSION --
_tREFERENCES --
_tChapter 2A MACHINE LEARNING APPROACH TOOPTION PRICING UNDER LÉ VY PROCESSES --
_tAbstract --
_t1. INTRODUCTION --
_t1.1. Machine Learning in Finance --
_tadvance.1.2. --
_t2. OPTION PRICING --
_t2.1. The Applications in Option Pricing --
_t2.2. Lévy Processes --
_t3. MACHINE LEARNING APPROACH --
_t4. CGMY MODEL CALIBRATION WITH GPR
505 0 0 _a5. ARTIFICIAL NEURAL NETWORKS --
_t5.1. Feedforward ANN --
_t5.2. Recurrent NN --
_t5.3. Long/Short Term --
_t5.4. Gated Recurrent Units --
_t5.5. Bidirectional Recurrent Neural Networks --
_t5.6. BoltzmannMachines --
_t5.7. Restricted BoltzmannMachines --
_t5.8. Convolutional Networks --
_t6. ACTIVATION FUNCTIONS --
_t6.1. Step Function --
_t6.2. Linear Activation Function --
_t6.3. Sigmoid Activation Function --
_t6.4. Hyperbolic Tangent Activation Function --
_t6.5. Softsign Activation Function --
_t6.6. Basic Rectified Linear Unit (ReLU)The --
_t6.7. Leaky ( --
_t6.8. Modified Rectifiers (MELU)Numerous attempts have
505 0 0 _a6.9. Softplus Activation Function --
_t7. APPLYING A FF ANN TO SOLVE THE MODELCALIBRATION PROBLEM --
_t7.1. Historical Data Preparation --
_t7.2. Synthetic Data --
_t7.3. Training the Network --
_t7.4. Market States ClassificationFinancial markets --
_t8. PRICING OPTIONS IN THE CGMY MODEL VIA AFF ANN --
_tCONCLUSION --
_tACKNOWLEDGMENT --
_tREFERENCES --
_tChapter 3ON SWING OPTION PRICINGUNDER LÉ VY PROCESS DYNAMICS --
_tAbstract --
_t1. INTRODUCTION --
_t2. SWING OPTIONS --
_t2.1. Policy Constraints --
_t2.1.1. Volume Penalties --
_t2.1.2. Ramping Constraints --
_t2.2. Cash Flows --
_t2.2.1. The Locally Constrained Case
505 0 0 _a2.3. Swing Rights and Recovery --
_t3. MODELS FOR THE UNDERLYING --
_t3.1. Exponential Lévy Dynamics --
_t3.2. Mean-Reverting --
_t4. PRICING METHODS --
_t4.1. A Discrete Time Formulation --
_t4.1.1. Value Functions --
_t4.1.2. Optimal Swing Policies --
_t4.2. Trees and Grids --
_t4.3. Monte Carlo --
_t4.4. PROJ Method --
_t4.4.1. Value Functions --
_t4.4.2. Pure Fixed Rights --
_t4.4.3. Numerical Examples: Fixed Rights --
_t4.5. A Continuous Time Formulation --
_t4.5.1. Variational Inequalities --
_t4.6. COSMethod --
_t4.7. PROJ: American Contracts --
_t4.7.1. Algorithm Structure --
_t4.7.2. Numerical Example: Constant Recovery
530 _a2
_ub
650 0 _aLévy processes.
655 1 _aElectronic Books.
700 1 _aKudryavtsev, Oleg,
_e5
856 4 0 _zClick to access digital title | log in using your CIU ID number and my.ciu.edu password.
_uhttpss://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2987252&site=eds-live&custid=s3260518
942 _cOB
_D
_eEB
_hQA.
_m2021
_QOL
_R
_x
_8NFIC
_2LOC
994 _a92
_bNT
999 _c80429
_d80429
902 _a1
_bCynthia Snell
_c1
_dCynthia Snell