000 | 05497cam a22004218i 4500 | ||
---|---|---|---|
001 | on1264730485 | ||
003 | OCoLC | ||
005 | 20240726104841.0 | ||
008 | 210816s2021 nyu ob 001 0 eng | ||
010 | _a2021038486 | ||
040 |
_aDLC _beng _erda _cDLC _dOCLCO _dEBLCP _dOCLCF _dNT |
||
020 |
_a9781536198492 _q((electronic)l(electronic)ctronic) |
||
042 | _apcc | ||
050 | 0 | 0 |
_aQA274 _b.A675 2021 |
049 | _aMAIN | ||
245 | 1 | 0 | _aApplications of Lévy processes /edited by Oleg Kudryavtsev, Southern Federal University, Rostov-on-Don, Russia; Rostov Branch of the Russian Customs Academy, Rostov-on-Don, Russia, Antonino Zanette, Department of Economics and Statistics, University of Udine, Udine, Italy. |
300 | _a1 online resource. | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_adata file _2rda |
||
490 | 0 | _aMathematics research developments | |
504 | _a2 | ||
520 | 0 |
_a"Lévy processes have found applications in various fields, including physics, chemistry, long-term climate change, telephone communication, and finance. The most famous Lévy process in finance is the Black-Scholes model. This book presents important financial applications of Lévy processes. The Editors consider jump-diffusion and pure non-Gaussian Lévy processes, the multi-dimensional Black-Scholes model, and regime-switching Lévy models. This book is comprised of seven chapters that focus on different approaches to solving applied problems under Lévy processes: Monte Carlo simulations, machine learning, the frame projection method, dynamic programming, the Fourier cosine series expansion, finite difference schemes, and the Wiener-Hopf factorization. Various numerical examples are carefully presented in tables and figures to illustrate the methods designed in the book"-- _cProvided by publisher. |
|
505 | 0 | 0 |
_aIntro -- _tAPPLICATIONS OFLÉVY PROCESSES -- _tAPPLICATIONS OFLÉVY PROCESSES -- _tCONTENTS -- _tPREFACE -- _tChapter 1VARIANCE REDUCTION APPLIED TOMACHINE LEARNING FOR PRICINGBERMUDAN/AMERICAN OPTIONSIN HIGH DIMENSION -- _tAbstract -- _t1. INTRODUCTION -- _t2. AMERICAN OPTIONS IN THE MULTI-DIMENSIONAL BLACK-SCHOLES MODEL -- _t3. MACHINE LEARNING FOR AMERICAN OPTIONSIN THE MULTI-DIMENSIONAL BLACK-SCHOLESMODEL -- _t3.1. Gaussian Process Regression -- _t3.2. Machine Learning Exact Integration for European Options -- _t3.3. Machine Learning Control Variate Algorithm for AmericanOptions -- _t3.3.1. The GPR Monte CarloMethod |
505 | 0 | 0 |
_a3.3.2. The GPR Monte Carlo Control Variate Method -- _t3.3.3. The Control Variate for GPR-Tree and GRP-EI -- _t4. NUMERICAL RESULTS -- _t4.1. Geometric and Arithmetic Basket Put Options -- _t4.2. Call on theMaximum Option -- _t4.3. Variance Reduction -- _tCONCLUSION -- _tREFERENCES -- _tChapter 2A MACHINE LEARNING APPROACH TOOPTION PRICING UNDER LÉ VY PROCESSES -- _tAbstract -- _t1. INTRODUCTION -- _t1.1. Machine Learning in Finance -- _tadvance.1.2. -- _t2. OPTION PRICING -- _t2.1. The Applications in Option Pricing -- _t2.2. Lévy Processes -- _t3. MACHINE LEARNING APPROACH -- _t4. CGMY MODEL CALIBRATION WITH GPR |
505 | 0 | 0 |
_a5. ARTIFICIAL NEURAL NETWORKS -- _t5.1. Feedforward ANN -- _t5.2. Recurrent NN -- _t5.3. Long/Short Term -- _t5.4. Gated Recurrent Units -- _t5.5. Bidirectional Recurrent Neural Networks -- _t5.6. BoltzmannMachines -- _t5.7. Restricted BoltzmannMachines -- _t5.8. Convolutional Networks -- _t6. ACTIVATION FUNCTIONS -- _t6.1. Step Function -- _t6.2. Linear Activation Function -- _t6.3. Sigmoid Activation Function -- _t6.4. Hyperbolic Tangent Activation Function -- _t6.5. Softsign Activation Function -- _t6.6. Basic Rectified Linear Unit (ReLU)The -- _t6.7. Leaky ( -- _t6.8. Modified Rectifiers (MELU)Numerous attempts have |
505 | 0 | 0 |
_a6.9. Softplus Activation Function -- _t7. APPLYING A FF ANN TO SOLVE THE MODELCALIBRATION PROBLEM -- _t7.1. Historical Data Preparation -- _t7.2. Synthetic Data -- _t7.3. Training the Network -- _t7.4. Market States ClassificationFinancial markets -- _t8. PRICING OPTIONS IN THE CGMY MODEL VIA AFF ANN -- _tCONCLUSION -- _tACKNOWLEDGMENT -- _tREFERENCES -- _tChapter 3ON SWING OPTION PRICINGUNDER LÉ VY PROCESS DYNAMICS -- _tAbstract -- _t1. INTRODUCTION -- _t2. SWING OPTIONS -- _t2.1. Policy Constraints -- _t2.1.1. Volume Penalties -- _t2.1.2. Ramping Constraints -- _t2.2. Cash Flows -- _t2.2.1. The Locally Constrained Case |
505 | 0 | 0 |
_a2.3. Swing Rights and Recovery -- _t3. MODELS FOR THE UNDERLYING -- _t3.1. Exponential Lévy Dynamics -- _t3.2. Mean-Reverting -- _t4. PRICING METHODS -- _t4.1. A Discrete Time Formulation -- _t4.1.1. Value Functions -- _t4.1.2. Optimal Swing Policies -- _t4.2. Trees and Grids -- _t4.3. Monte Carlo -- _t4.4. PROJ Method -- _t4.4.1. Value Functions -- _t4.4.2. Pure Fixed Rights -- _t4.4.3. Numerical Examples: Fixed Rights -- _t4.5. A Continuous Time Formulation -- _t4.5.1. Variational Inequalities -- _t4.6. COSMethod -- _t4.7. PROJ: American Contracts -- _t4.7.1. Algorithm Structure -- _t4.7.2. Numerical Example: Constant Recovery |
530 |
_a2 _ub |
||
650 | 0 | _aLévy processes. | |
655 | 1 | _aElectronic Books. | |
700 | 1 |
_aKudryavtsev, Oleg, _e5 |
|
856 | 4 | 0 |
_zClick to access digital title | log in using your CIU ID number and my.ciu.edu password. _uhttpss://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2987252&site=eds-live&custid=s3260518 |
942 |
_cOB _D _eEB _hQA. _m2021 _QOL _R _x _8NFIC _2LOC |
||
994 |
_a92 _bNT |
||
999 |
_c80429 _d80429 |
||
902 |
_a1 _bCynthia Snell _c1 _dCynthia Snell |