000 04161cam a2200409Mi 4500
001 on1250259089
003 OCoLC
005 20240726104837.0
008 210510s2021 xx o 0|| 0 eng d
040 _aYDX
_beng
_erda
_cYDX
_dNT
_dEBLCP
_dUKAHL
020 _a9781536196177
_q((electronic)l(electronic)ctronic)
050 0 4 _aQA431
_b.I584 2021
049 _aMAIN
100 1 _aXIAO, JIE.
_e1
245 1 0 _aINTEGRAL AND FUNCTIONAL ANALYSIS (UPDATED EDITION)
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _adata file
_2rda
490 1 _aMathematics Research Developments Ser.
504 _a2
505 0 0 _aIntro --
_tINTEGRAL AND FUNCTIONALANALYSIS(UPDATED EDITION) --
_tINTEGRAL AND FUNCTIONALANALYSIS(UPDATED EDITION) --
_tContents --
_tPreface --
_tAcknowledgments --
_tChapter 1Preliminaries --
_t1.1 Sets, Relations, Functions, Cardinals and Ordinals --
_t1.2 Reals, Some Basic Theorems and Sequence Limits --
_tProblems --
_tChapter 2Riemann Integrals --
_t2.1 Definitions, Examples and Basic Properties --
_t2.2 Algebraic Operations and the Darboux Criterion --
_t2.3 Fundamental Theorem of Calculus --
_t2.4 Improper Integrals --
_tProblems --
_tChapter 3Riemann-Stieltjes Integrals --
_t3.1 Functions of Bounded Variation
505 0 0 _a3.2 Definition and Basic Properties --
_t3.3 Nonexistence and Existence for Integrals --
_t3.4 Evaluations of Integrals --
_t3.5 Improper Situations --
_tProblems --
_tChapter 4Lebesgue-Radon-StieltjesIntegrals --
_t4.1 Foundational Material --
_t4.2 Essential Properties --
_t4.3 Convergence Theorems --
_t4.4 Extension via Measurability --
_t4.5 Double, Iterated and Generic Integrals --
_tProblems --
_tChapter 5Absolute Continuitiesin Lebesgue Integrals --
_t5.1 Lebesgue's Outer Measure and Vitali's Covering --
_t5.2 Derivatives of Increasing Functions --
_t5.3 Absolutely Continuous Functions
505 0 0 _a5.4 Cantor's Ternary Set and Singular Function --
_t5.5 Lebesgue's Points --
_tProblems --
_tChapter 6Metric Spaces --
_t6.1 Metrizable Topology and Connectedness --
_t6.2 Completeness --
_t6.3 Compactness, Density and Separability --
_tProblems --
_tChapter 7Continuous Mappings --
_t7.1 Criteria for Continuity --
_t7.2 Continuous Mappings over Compactor ConnectedMetric Spaces --
_t7.3 Sequences of Mappings --
_t7.4 Contractions --
_t7.5 Structures of Metric Spaces --
_tProblems --
_tChapter 8Normed Linear Spaces --
_t8.1 Linear Spaces, Norms and Quotient Spaces --
_t8.2 Finite Dimensional Spaces --
_t8.3 Bounded Linear Operators
505 0 0 _a8.4 Linear Functionals via Hahn-Banach Extension --
_tProblems --
_tChapter 9Banach Spaces via Operatorsand Functionals --
_t9.1 Definition and Beginning Examples --
_t9.2 Uniform Boundedness --
_tOpen Map --
_tClosed Graph --
_t9.3 Dual Banach Spaces by Examples --
_t9.4 Weak and Weak* Topologies --
_t9.5 Compact and Dual Operators --
_tProblems --
_tChapter 10Hilbert Spaces and TheirOperators --
_t10.1 Definition, Examples and Basic Properties --
_t10.2 Orthogonality, Orthogonal Complementand Duality --
_t10.3 Orthonormal Sets and Bases --
_t10.4 Five Special Bounded Operators --
_t10.5 Compact Operators via Spectrum --
_tProblems
505 0 0 _aHints or Solutions --
_t1 Preliminaries --
_t3 Riemann-Stieltjes Integrals --
_t4 Lebesgue-Radon-Stieltjes Integrals --
_t5 Absolute Continuities in Lebesgue Integrals --
_t6 Metric Spaces --
_t7 Continuous Mappings --
_t8 Normed Linear Spaces --
_t9 Banach Spaces via Operators and Functionals --
_t10 Hilbert Spaces and Their Operators --
_t2 Riemann Integrals --
_tReferences --
_tAbout the Author --
_tIndex --
_tBlank Page --
_tBlank Page
530 _a2
_ub
650 0 _aIntegral equations.
650 0 _aMetric spaces.
650 0 _aFunctional analysis.
655 1 _aElectronic Books.
856 4 0 _zClick to access digital title | log in using your CIU ID number and my.ciu.edu password.
_uhttpss://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2913944&site=eds-live&custid=s3260518
942 _cOB
_D
_eEB
_hQA
_m2021
_QOL
_R
_x
_8NFIC
_2LOC
994 _a92
_bNT
999 _c80220
_d80220
902 _a1
_bCynthia Snell
_c1
_dCynthia Snell