000 04146nam a2200841 i 4500
001 10594649
003 CaPaEBR
005 20241023114827.0
006 m eo d
007 cr cn |||m|||a
008 120829s2012 nyu foa 001 0 eng d
020 _a9781606494356
_qelectronic bk.
024 7 _a10.4128/9781606494356
_2doi
035 _a(OCoLC)808991413
035 _a(CaBNVSL)swl00401166
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQA278.2
100 1 _aWilson, J. Holton,
_d1942-,
_eauthor
245 1 0 _aRegression analysis :
_bunderstanding and building business and economic models using Excel /
_cJ. Holton Wilson, Barry P. Keating, and Mary Beal-Hodges.
250 _a1st ed.
264 1 _a[New York, N.Y.] (222 East 46th Street, New York, NY 10017) :
_bBusiness Expert Press,
_c[(c)2012.]
300 _a1 electronic text (179 pages) :
_bdigital file.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _adata file
_2rda
490 1 _aQuantitative approaches to decision making collection,
_x2163-9582
500 _aPart of: 2012 digital library.
500 _aIncludes index.
505 0 _a1. Background issues for regression analysis --
_t2. Introduction to regression analysis --
_t3. The ordinary least squares (OLS) regression model --
_t4. Evaluation of ordinary least squares (OLS) regression models --
_t5. Point and interval estimates from a regression model --
_t6. Multiple linear regression --
_t7. A market share multiple regression model --
_t8. Qualitative events and seasonality in multiple regression models --
_t9. Nonlinear regression models --
_t10. Abercrombie and Fitch Company regression case study --
_t11. The formal ordinary least squares (OLS) regression model --
_tAppendix. Some statistical background --
_tIndex.
506 _aAccess restricted to authorized users and institutions.
520 3 _aThis book covers essential elements of building and understanding regression models in a business/economic context in an intuitive manner. The technique of regression analysis is used so often in business and economics today that an understanding of its use is necessary for almost everyone engaged in the field. It is especially useful for those engaged in working with numbers - preparing forecasts, budgeting, estimating the effects of business decisions, and any of the forms of analytics that have recently become so useful.
530 _a2
_ub
530 _aAlso available in printing.
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat reader.
588 _aTitle from PDF t.p. (viewed on August 29, 2012).
630 0 0 _aMicrosoft Excel (Computer file)
650 0 _aRegression analysis.
650 0 _aEconometric models.
653 _aRegression analysis
653 _aordinary least squares (OLS)
653 _atime-series data
653 _across-sectional data,
653 _adependent variables
653 _aindependent variables
653 _apoint estimates
653 _ainterval estimates
653 _ahypothesis testing
653 _astatistical significance
653 _aconfidence level
653 _asignificance level
653 _ap-value
653 _aR-squared
653 _acoefficient of determination
653 _amulticollinearity
653 _acorrelation
653 _aserial correlation
653 _aseasonality
653 _aqualitative events
653 _adummy variables
653 _anon-linear regression models
653 _amarket share regression model
653 _aAbercrombie & Fitch Co.
655 0 _a[genre]
700 1 _aKeating, Barry P.
700 1 _aBeal-Hodges, Mary.
776 0 8 _iPrint version:
_z9781606494349
830 0 _a2012 digital library.
830 0 _aQuantitative approaches to decision making collection.
_x2163-9582
856 4 0 _uhttps://go.openathens.net/redirector/ciu.edu?url=https://portal.igpublish.com/iglibrary/search/BEPB0000138.html
942 _2lcc
_bCIU
_cOB
_eBEP
_QOL
_zBEP10594649
999 _c74201
_d74201
902 _c1
_dCynthia Snell