000 02646cam a2200397 i 4500
001 ocn702192563
003 OCoLC
005 20240726102039.0
008 050011s2006 nyua b 001 0 eng
010 _a2005029447
020 _a9780521675994
020 _a9780521861243
040 _aDLC
_beng
_erda
_cYUS
042 _apcc
049 _aSBIM
050 0 4 _aQA9
050 0 4 _aQA9.V439.H698 2006
100 1 _aVelleman, Daniel J,
_e1
245 1 0 _aHow to prove it :
_ba structured approach /
_cDaniel J. Velleman.
_hPR
250 _asecond edition.
260 _aNew York :
_bCambridge University Press,
_c(c)2006.
300 _axiii, 384 pages :
_billustrations ;
_c24 cm.
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
504 _a2
505 0 0 _aIntroduction --
_tSentential logic --
_t1.1 Deductive reasoning and logical connectives --
_t1.2 truth tables --
_t1.3 variables and sets --
_t1.4 operations on sets --
_t1.5 The conditional and biconditional connectives --
_tQuantificational logic --
_t2.1 Quantifiers --
_t2.2 Equivalences involving quantifiers --
_t2.3 More operations on sets --
_tProofs --
_t3.1 proof strategies --
_t3.2 proofs involving negations and conditionals --
_t3.3 Proofs involving quantifiers --
_t3.4 Proofs involving conjunctions and biconditionals --
_t3.5 Proofs involving disjunctions --
_t3.6 Existence and uniqueness proofs --
_t3.7 More examples of proofs --
_tRelations --
_t4.1 Ordered pairs and cartesian products --
_t4.2 Relations --
_t4.3 More about relations --
_t4.4 Ordering relations --
_t4.5 Closures --
_t4.6 Equivalence relations --
_tFunctions --
_t5.1 Functions --
_t5.2 One-to-one and onto --
_t5.3 Inverses of functions --
_t5.4 Images and inverse images: a research project --
_tMathematical induction --
_t6.1 Proof by mathematical induction --
_t6.2 More examples --
_t6.3 Recursion --
_t6.4 Strong induction --
_t6.5 Closures again --
_tInfinite sets --
_t7.1 Equinumerous sets --
_t7.2 Countable and uncountable sets --
_t7.3 The cantor--Schroder--Bernstein theorem --
_tAppendix 1: Solutions to selected exercises --
_tAppendix 2: Proof designer --
_tSuggestions for further reading --
_tSummary for proof techniques --
_tIndex.
530 _a2
650 0 _aLogic, Symbolic and mathematical.
650 0 _aMathematics.
907 _a.b15978722
_b12-02-17
_c06-08-11
942 _cBK
_hQA
_m2006
_e
_i2018-07-14
_k0.00
998 _accst
_acim
_b01-04-12
_cm
_da
_e-
_feng
_gnyu
_h0
994 _aC0
_bSBI
945 _g1
_i31923001468905
_j2
_lcimc
_o-
_p0.00
_q-
_r-
_s- --
_t61
_u2
_v1
_w2
_x0
_y.i1880603x
_z06-08-11
999 _c33563
_d33563
902 _a1
_bCynthia Snell
_c1
_dCynthia Snell