000 | 02646cam a2200397 i 4500 | ||
---|---|---|---|
001 | ocn702192563 | ||
003 | OCoLC | ||
005 | 20240726102039.0 | ||
008 | 050011s2006 nyua b 001 0 eng | ||
010 | _a2005029447 | ||
020 | _a9780521675994 | ||
020 | _a9780521861243 | ||
040 |
_aDLC _beng _erda _cYUS |
||
042 | _apcc | ||
049 | _aSBIM | ||
050 | 0 | 4 | _aQA9 |
050 | 0 | 4 | _aQA9.V439.H698 2006 |
100 | 1 |
_aVelleman, Daniel J, _e1 |
|
245 | 1 | 0 |
_aHow to prove it : _ba structured approach / _cDaniel J. Velleman. _hPR |
250 | _asecond edition. | ||
260 |
_aNew York : _bCambridge University Press, _c(c)2006. |
||
300 |
_axiii, 384 pages : _billustrations ; _c24 cm. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_aunmediated _bn _2rdamedia |
||
338 |
_avolume _bnc _2rdacarrier |
||
504 | _a2 | ||
505 | 0 | 0 |
_aIntroduction -- _tSentential logic -- _t1.1 Deductive reasoning and logical connectives -- _t1.2 truth tables -- _t1.3 variables and sets -- _t1.4 operations on sets -- _t1.5 The conditional and biconditional connectives -- _tQuantificational logic -- _t2.1 Quantifiers -- _t2.2 Equivalences involving quantifiers -- _t2.3 More operations on sets -- _tProofs -- _t3.1 proof strategies -- _t3.2 proofs involving negations and conditionals -- _t3.3 Proofs involving quantifiers -- _t3.4 Proofs involving conjunctions and biconditionals -- _t3.5 Proofs involving disjunctions -- _t3.6 Existence and uniqueness proofs -- _t3.7 More examples of proofs -- _tRelations -- _t4.1 Ordered pairs and cartesian products -- _t4.2 Relations -- _t4.3 More about relations -- _t4.4 Ordering relations -- _t4.5 Closures -- _t4.6 Equivalence relations -- _tFunctions -- _t5.1 Functions -- _t5.2 One-to-one and onto -- _t5.3 Inverses of functions -- _t5.4 Images and inverse images: a research project -- _tMathematical induction -- _t6.1 Proof by mathematical induction -- _t6.2 More examples -- _t6.3 Recursion -- _t6.4 Strong induction -- _t6.5 Closures again -- _tInfinite sets -- _t7.1 Equinumerous sets -- _t7.2 Countable and uncountable sets -- _t7.3 The cantor--Schroder--Bernstein theorem -- _tAppendix 1: Solutions to selected exercises -- _tAppendix 2: Proof designer -- _tSuggestions for further reading -- _tSummary for proof techniques -- _tIndex. |
530 | _a2 | ||
650 | 0 | _aLogic, Symbolic and mathematical. | |
650 | 0 | _aMathematics. | |
907 |
_a.b15978722 _b12-02-17 _c06-08-11 |
||
942 |
_cBK _hQA _m2006 _e _i2018-07-14 _k0.00 |
||
998 |
_accst _acim _b01-04-12 _cm _da _e- _feng _gnyu _h0 |
||
994 |
_aC0 _bSBI |
||
945 |
_g1 _i31923001468905 _j2 _lcimc _o- _p0.00 _q- _r- _s- -- _t61 _u2 _v1 _w2 _x0 _y.i1880603x _z06-08-11 |
||
999 |
_c33563 _d33563 |
||
902 |
_a1 _bCynthia Snell _c1 _dCynthia Snell |