000 11237cam a22004937i 4500
001 ocn428032328
003 OCoLC
005 20240726100353.0
008 090814s2011 caua 001 0 eng d
010 _a2009934974
020 _a9780495387893
020 _a9780495553953
035 _a(OCoLC)428032328
040 _aBTCTA
_beng
_erda
_cDLC
_dBTCTA
_dCUK
_dCDX
_dOCLCF
_dOCLCQ
_dSBI
042 _alccopycat
049 _aSBIM
050 0 4 _aQA152.P193.C655 2011
050 0 4 _aQA152
100 1 _aStewart, James,
_d1941-
_e1
245 1 0 _aCollege algebra :
_bconcepts and contexts /
_cJames Stewart, Lothar Redlin, Saleem Watson, Phyllis Panman.
_hPR
250 _ainstructor's edition.ition
260 _aBelmont, California :
_bBrooks/Cole Cengage Learning,
_c(c)2011.
300 _axx, 3, 639, 90, 77, 19 pages :
_billustrations (some color) ;
_c27 cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
504 _a4..
505 0 0 _a1. DATA, FUNCTIONS, AND MissouriDELS --
_tMaking sense of data --
_tAnalyzing one-variable data --
_tanalyzing two-variable data --
_tVisualizing relationships in data --
_tRelations: input and output --
_tGraphing two-variable data in a coordinate plane --
_tReading a Graph --
_tEquations : describing relationships in data --
_tMaking a linear model from data --
_tGetting information from a linear model --
_tFunctions : describing change --
_tDefinition of function --
_tWhich two-variable data represent functions? --
_tWhich equations represent functions? --
_tWhich graphs represent functions? --
_tFour ways to represent a function --
_tFunction notation : the concept of function as a rule --
_tFunction notation --
_tEvaluating Functions-net change --
_tThe domain of a function --
_tPiecewise defined functions --
_tWorking with functions : graphs and graphing calculators --
_tGraphing a function from a verbal description --
_tGraphs of basic functions --
_tGraphing with a graphing calculator --
_tGraphing piecewise defined functions --
_tWorking with functions : getting information from the graph --
_tReading the graph of a function --
_tDomain and range from a graph --
_tIncreasing and decreasing functions --
_tLocal maximum and minimum values --
_tWorking with functions : modeling real-world relationships --
_tModeling with functions --
_tGetting information from the graph of a model --
_tMaking and using formulas --
_tWhat is a formula? Finding formulas --
_tVariables with subscripts --
_tReading and using formulas --
_tExplorations --
_tBias in presenting data --
_tCollecting and analyzing data --
_tEvery graph tells a story.
505 0 0 _a2. LINEAR FUNCTIONS AND MissouriDELS --
_tWorking with functions : average rate of change --
_tAverage rate of change of a function --
_tAverage speed of a moving object --
_tFunctions defined by algebraic expressions --
_tLinear functions : constant rate of change --
_tLinear functions --
_tLinear functions and rate of change --
_tLinear functions and slope --
_tUsing slope and rate of change --
_tEquations of lines : making linear models --
_tSlope-intercept form --
_tPoint-slope form --
_tHorizontal and vertical lines --
_tWhen is the graph of an equation a line? --
_tVarying the coefficients : direct proportionality --
_tVarying the constant coefficient: parallel lines --
_tvarying the coefficient of x: perpendicular lines --
_tModeling direct proportionality --
_tLinear regression : fitting lines to data --
_tThe line that best fits the data --
_tUsing the line of best fit for prediction --
_tHow good is the fit? the correlation coefficient --
_tLinear equations : getting information from a model --
_tGetting information from a linear model --
_tModels that lead to linear equations --
_tLinear equations : where lines meet --
_tWhere lines meet --
_tModeling supply and demand --
_tExplorations --
_tWhen rates of change change --
_tLinear patterns --
_tBridge science --
_tCorrelation and causation --
_tFair division of assets.
505 0 0 _a3. EXPONENTIAL FUNCTIONS AND MissouriDELS --
_tExponential growth and decay --
_tAn example of exponential growth --
_tModeling exponential growth: the growth factor --
_tModeling exponential growth: the growth rate --
_tModeling exponential decay --
_tExponential models : comparing rates --
_tChanging the time period --
_tGrowth of an investment: compound interest --
_tComparing linear and exponential growth --
_tAverage rate of change and percentage rate of change --
_tComparing linear and exponential growth --
_tLogistic growth: growth with limited resources --
_tGraphs of exponential functions --
_tGraphs of exponential functions --
_tThe effect of varying a or c --
_tFinding an exponential --
_tFunction from a graph --
_tFitting exponential curves to data --
_tFinding exponential models for data --
_tIs an exponential model appropriate? --
_tModeling logistic growth --
_tExplorations --
_textreme numbers-scientific notation --
_tso you want to be a millionaire? --
_texponential patterns --
_tmodeling radioactivity with coins and dice .
505 0 0 _a4. LOGARITHMIC FUNCTIONS AND EXPONENTIAL MissouriDELS --
_tLogarithmic functions --
_tLogarithms base 10 --
_tLogarithms base a --
_tBasic properties of logarithms --
_tLogarithmic functions and their graphs --
_tLaws of logarithms --
_tLaws of logarithms --
_tExpanding and combing logarithmic expressions --
_tChange of base formula --
_tLogarithmic scales --
_tLogarithmic scales --
_tThe ph scale --
_tThe decibel scale --
_tThe richter scale --
_tThe natural exponential and logarithmic functions --
_tWhat is the number e? --
_tThe natural exponential and logarithmic functions --
_tContinuously compounded interest --
_tInstantaneous rates of growth or decay --
_tExpressing exponential models in terms of e --
_tExponential equations : getting information from a model --
_tSolving exponential and logarithmic equations --
_tGetting information from exponential models: population and investment --
_tGetting information from exponential models:newton's law of cooling --
_tFinding the age of ancient objects: radiocarbon dating --
_tWorking with functions : composition and inverse --
_tFunctions o functions --
_tReversing the rule of a function --
_tWhich functions have inverses? Exponential and logarithmic functions as inverse functions --
_tExplorations --
_tsuper origami --
_torders of magnitude --
_tsemi-log graphs --
_tthe even-tempered clavier.
505 0 0 _a5. QUADRATIC FUNCTIONS AND MissouriDELS --
_tWorking with functions : shifting and stretching --
_tShifting graphs up and down --
_tShifting graphs left and right --
_tStretching and shrinking graphics vertically --
_tReflecting graphs --
_tQuadratic functions and their graphs --
_tThe squaring function --
_tQuadratic functions in general form --
_tQuadratic functions in standard form --
_tGraphing using the standard form --
_tMaxima and minima : getting information from a model --
_tFinding maximum and minimum values --
_tModeling with quadratic functions --
_tQuadratic equations : getting information from a model --
_tSolving quadratic equations: factoring --
_tSolving quadratic equations: the quadratic formula --
_tThe discriminant --
_tModeling with quadratic functions --
_tFitting quadratic curves to data --
_tModleing data with quadratic functions --
_tExplorations --
_ttransformation stories --
_tToricelli's law --
_tquadratic patterns.
505 0 0 _a6. POWER, POLYNOMIAL, AND RATIONAL FUNCTIONS --
_tWorking with functions : algebraic operations --
_tAdding and subtracting functions --
_tmultiplying and dividing functions --
_tPower functions : positive powers --
_tPower functions with positive integer powers --
_tDirect proportionality --
_tFractional positive powers --
_tModeling with power functions --
_tPolynomial functions : combining power functions --
_tPolynomial functions --
_tGraphing polynomial functions by factoring --
_tEnd behavior and the leading term --
_tModeling with polynomial functions --
_tFitting power and polynomial curves to data --
_tFitting power curves to data --
_tA linear, power, or exponential model? --
_tFitting polynomial curves to data --
_tPower functions : negative powers --
_tThe reciprocal function --
_tInverse proportionality --
_tInverse square laws --
_tRational functions --
_tGraphing quotients of linear functions --
_tGraphing rational functions --
_tExplorations --
_tonly in the movies? --
_tproportionality-shape and size; managing traffic --
_talcohol and the surge function.
505 0 0 _a7. SYSTEMS OF EQUATIONS AND DATA Indiana CaliforniaTEGORIES --
_tSystems of linear equations in two variables --
_tSystems of equations and their solutions --
_tThe substitution method --
_tThe elimination method --
_tGraphical interpretation: the number of solutions --
_tApplications: how much gold is in the crown? --
_tSystems of linear equations in several variables --
_tSolving a linear system --
_tInconsistent and dependent systems --
_tModeling with linear systems --
_tUsing matrices to solve systems of linear equations --
_tMatrices --
_tThe augmented matrix of a linear system --
_tElementary row operations --
_tRow-echelon form --
_tReduced row-echelon form --
_tInconsistent and dependent systems --
_tMatrices and data in categories --
_tOrganizing categorical data in a matrix --
_tAdding matrices --
_tScalar multiplication of matrices --
_tMultiplying a matrix times a column matrix --
_tMatrix operations : getting information from data --
_tAddition, subtraction, and scalar multiplication --
_tMatrix multiplication --
_tGetting information from categorical data --
_tMatrix equations : solving a linear system --
_tThe inverse of a matrix --
_tMatrix equations --
_tModeling with matrix equations --
_tExplorations --
_tcollecting categorical data --
_twill the species survive?.
505 0 0 _aAlgebra toolkit A : working with numbers --
_tnumbers and their properties --
_tthe number line and intervals --
_tinteger exponents; radicals and rational exponents --
_tAlgebra toolkit B : working with expressions --
_tcombining algebraic expressions --
_tfactoring algebraic expressions --
_trational expressions --
_tAlgebra toolkit C : working with equations --
_tsolving basic equations --
_tsolving quadratic equations --
_tsolving inequalities --
_tAlgebra toolkit D : working with graphs --
_tthe coordinate plane --
_tgraphs of two-variable equations --
_tusing a graphing calculator --
_tsolving equations and inequalities graphically.
520 0 _aThis textbook presents graphic, numeric and analytic approaches to the study of precalculus concepts from college algebra. It includes application of appropriate technology including graphing calculators to model, analyze and interpret a collection of data or to solve real-world application problems from a variety of disciplines. Topics include: the real number system; algebraic, exponential and logarithmic functions and their inverses; graphing techniques for polynomial and rational functions; complex numbers; theory of equations; partial fractions; mathematical induction; sequences and series; matrices; and the binomial theorem.
530 _a2
653 _aAlgebra
700 1 _aRedlin, Lothar,
_eaut
700 1 _aWatson, Saleem,
_eaut
700 1 _aPanman, Phyllis,
_eaut
942 _cBK
_hQA
_m2011
_e4
_i2019-10-28
_k0.00
_2ddc
_w31.10
999 _c17910
_d17910
902 _a1
_bCynthia Snell
_c1
_dCynthia Snell