Amazon cover image
Image from Amazon.com

Induced representations of locally compact groupsEberhard Kaniuth, University of Paderborn, Germany, Keith F. Taylor, Dalhousie University, Nova Scotia.

By: Contributor(s): Material type: TextTextSeries: Publication details: New York : Cambridge University Press, (c)2013.Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781139839723
Subject(s): Genre/Form: LOC classification:
  • QA387 .I538 2013
Online resources: Available additional physical forms:
Contents:
Subject: "Locally compact groups arise in many diverse areas of mathematics, the physical sciences, and engineering and the presence of the group is usually felt through unitary representations of the group. This observation underlies the importance of understanding such representations and how they may be constructed, combined, or decomposed. Of particular importance are the irreducible unitary representations. In the middle of the last century, G.W. Mackey initiated a program to develop a systematic method for identifying all the irreducible unitary representations of a given locally compact group G. We denote the set of all unitary equivalence classes of irreducible unitary representations of G by G. Mackey's methods are only effective when G has certain restrictive structural characteristics; nevertheless, time has shown that many of the groups that arise in important problems are appropriate for Mackey's approach. The program Mackey initiated received contributions from many researchers with some of the most substantial advances made by R.J. Blattner and J.M.G. Fell. Fell'swork is particularly important in studying Gas a topological space. At the core of this program is the inducing construction, which is a method of building a unitary representation of a group from a representation of a subgroup"--
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number URL Status Date due Barcode
Online Book (LOGIN USING YOUR MY CIU LOGIN AND PASSWORD) Online Book (LOGIN USING YOUR MY CIU LOGIN AND PASSWORD) G. Allen Fleece Library ONLINE Non-fiction QA387 (Browse shelf(Opens below)) Link to resource Available ocn817953676

"Locally compact groups arise in many diverse areas of mathematics, the physical sciences, and engineering and the presence of the group is usually felt through unitary representations of the group. This observation underlies the importance of understanding such representations and how they may be constructed, combined, or decomposed. Of particular importance are the irreducible unitary representations. In the middle of the last century, G.W. Mackey initiated a program to develop a systematic method for identifying all the irreducible unitary representations of a given locally compact group G. We denote the set of all unitary equivalence classes of irreducible unitary representations of G by G. Mackey's methods are only effective when G has certain restrictive structural characteristics; nevertheless, time has shown that many of the groups that arise in important problems are appropriate for Mackey's approach. The program Mackey initiated received contributions from many researchers with some of the most substantial advances made by R.J. Blattner and J.M.G. Fell. Fell'swork is particularly important in studying Gas a topological space. At the core of this program is the inducing construction, which is a method of building a unitary representation of a group from a representation of a subgroup"--

Includes bibliographies and index.

Machine generated contents note: 1. Basics; 2. Induced representations; 3. The imprimitivity theorem; 4. Mackey analysis; 5. Topologies on dual spaces; 6. Topological Frobenius properties; 7. Further applications.

COPYRIGHT NOT covered - Click this link to request copyright permission:

https://lib.ciu.edu/copyright-request-form

There are no comments on this title.

to post a comment.