Rarefied Gas Flows and Dynamic Plasma Phenomena in Electric Propulsion Systems
Material type: TextPublication details: Göttingen : Cuvillier Verlag, (c)2020.Description: 1 online resource (369 pages)Content type:- text
- computer
- online resource
- 3736963246
- 9783736963245
- TL709 .R374 2020
- COPYRIGHT NOT covered - Click this link to request copyright permission: https://lib.ciu.edu/copyright-request-form
Item type | Current library | Collection | Call number | URL | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
Online Book (LOGIN USING YOUR MY CIU LOGIN AND PASSWORD) | G. Allen Fleece Library ONLINE | Non-fiction | TL709 (Browse shelf(Opens below)) | Link to resource | Available | on1231608245 |
Description based upon print version of record.
Includes bibliographies and index.
Intro -- Chapter 1 Introduction -- 1.1 Motivation -- 1.2 Basic setup -- 1.3 Goals and thesis outline -- Chapter 2 Theoretical Principles -- 2.1 Knudsen number and flow regimes -- 2.2 Lagrangian and Eulerian specification of the flowfield -- 2.3 Conservation of mass -- 2.4 Conservation of momentum -- 2.5 Conservation of energy -- 2.6 Ideal gas -- 2.7 The Laval nozzle -- 2.8 Fundamentals of plasma -- 2.8.1 Physical properties of plasma -- 2.9 Kinetic theory of gases -- 2.9.1 Fundamental concepts -- 2.9.2 Velocity distribution function and macroscopic properties -- 2.9.3 Maxwell distribution
2.9.4 Boltzmann equation -- 2.10 Summary -- Chapter 3 Computational Methods -- 3.1 Methods based on transport equations -- 3.1.1 Finite Difference Method -- 3.1.2 Finite Volume Method -- 3.1.3 Methods for unsteady problems -- 3.1.4 Solution algorithms for the Navier-Stokes equations -- 3.2 Direct Simulation Monte Carlo (DSMC) -- 3.2.1 Molecular transport -- 3.2.2 Molecular collisions -- 3.2.3 Implementation of boundary conditions -- 3.2.4 Macroscopic properties -- 3.3 Particle-In-Cell Method (PIC) -- 3.3.1 Particle motion -- Lorentz solver -- 3.3.2 Field equations -- Maxwell solver
3.3.3 Particle and force weighting -- 3.4 Summary -- Chapter 4 Transonic Gas Flows AcrossMultiple Flow Regimes -- 4.1 State of the art and previous studies -- 4.2 Experimental setup -- 4.2.1 Vacuum and measurement systems -- 4.2.2 Arcjet thruster and Laval nozzle -- 4.2.3 Experimental series -- 4.3 Numerical setup -- 4.3.1 Solved equations and numerical solver -- 4.3.2 Numerical mesh and boundary conditions -- 4.3.3 Numerical setup for DSMC simulations -- 4.4 Results and discussion -- 4.4.1 Experimental results -- 4.4.2 Navier-Stokes simulations -- 4.4.3 DSMC results
4.4.4 Comparison between Navier-Stokes and experimental results -- 4.4.5 Knudsen-dependent correcting function for the dimensionlesspressure drop -- 4.4.6 Molar mass dependency of the Knudsen function coefficients -- 4.4.7 Thrust and specific impulse -- 4.5 Summary -- Chapter 5 Development of a Kinetic PlasmaModel for Electric PropulsionSystems -- 5.1 Electric propulsion systems for spacecraft -- 5.2 State of the art and previous works -- 5.2.1 Resistojets -- 5.2.2 Arcjet thrusters -- 5.2.3 Ion thrusters -- 5.2.4 Hall thrusters -- 5.3 Development of a kinetic plasma model
5.3.1 General modelling concept -- 5.3.2 Basis DSMC solver -- 5.3.3 Implementation of PIC algorithm -- 5.3.4 Coulomb collisions with the MCC algorithm -- 5.3.5 Electron-neutral collisions -- 5.3.6 Recombination -- 5.3.7 Boundary conditions in dsmcPlasmaFoam -- 5.3.8 Numerical aspects -- 5.3.9 Global model implementation in OpenFOAM -- 5.4 Summary -- Chapter 6 Validation of dsmcPlasmaFoam -- 6.1 Maxwell solver -- 6.2 Lorentz solver -- 6.2.1 Solver behaviour without implementation of the Leapfrog algorithm -- 6.2.2 Solver behaviour with implemented Leapfrog algorithm
6.3 Particle and force weighting.
COPYRIGHT NOT covered - Click this link to request copyright permission:
There are no comments on this title.