Amazon cover image
Image from Amazon.com

Applications of group theory to atoms, molecules, and solids /Thomas Wolfram, Şinasi Ellialtioğlu.

By: Material type: TextTextPublication details: Cambridge : Cambridge University Press, (c)2014.Description: 1 online resource (xii, 471 pages) : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781107472068
  • 9781139236294
Subject(s): Genre/Form: LOC classification:
  • QC176 .A675 2014
Online resources: Available additional physical forms:
Contents:
1.1. In-plane molecular vibrations of squarene -- 1.2. Reducible and irreducible representations of a group -- 1.3. Eigenvalues and eigenvectors -- 1.4. Construction of the force-constant matrix from the eigenvalues -- 1.5. Optical properties -- References -- Exercises -- 2. Molecular vibrations of isotopically substituted KB2 molecules -- 2.1. Step 1: Identify the point group and its symmetry operations -- 2.2. Step 2: Specify the coordinate system and the basis functions -- 2.3. Step 3: Determine the effects of the symmetry operations on the basis functions -- 2.4. Step 4: Construct the matrix representations for each element of the group using the basis functions -- 2.5. Step 5: Determine the number and types of irreducible representations -- 2.6. Step 6: Analyze the information contained in the decompositions -- 2.7. Step 7: Generate the symmetry functions -- 2.8. Step 8: Diagonalize the matrix eigenvalue equation.
2.10. Green's function theory of isotopic molecular vibrations -- 2.11. Results for isotopically substituted forms of H2O -- References -- Exercises -- 3. Spherical symmetry and the full rotation group -- 3.1. Hydrogen-like orbitals -- 3.2. Representations of the full rotation group -- 3.3. The character of a rotation -- 3.4. Decomposition of D(l) in a non-spherical environment -- 3.5. Direct-product groups and representations -- 3.6. General properties of direct-product groups and representations -- 3.7. Selection rules for matrix elements -- 3.8. General representations of the full rotation group -- References -- Exercises -- 4. Crystal-field theory -- 4.1. Splitting of d-orbital degeneracy by a crystal field -- 4.2. Multi-electron systems -- 4.3. Jahn---Teller effects -- References -- Exercises -- 5. Electron spin and angular momentum -- 5.1. Pauli spin matrices -- 5.2. Measurement of spin.
5.4. Multi-electron spin-orbital states -- 5.5. The L---S-coupling scheme -- 5.6. Generating angular-momentum eigenstates -- 5.7. Spin---orbit interaction -- 5.8. Crystal double groups -- 5.9. The Zeeman effect (weak-magnetic-field case) -- References -- Exercises -- 6. Molecular electronic structure: The LCAO model -- 6.1.N-electron systems -- 6.2. Empirical LCAO models -- 6.3. Parameterized LCAO models -- 6.4. An example: The electronic structure of squarene -- 6.5. The electronic structure of H2O -- References -- Exercises -- 7. Electronic states of diatomic molecules -- 7.1. Bonding and antibonding states: Symmetry functions -- 7.2. The "building-up" of molecular orbitals for diatomic molecules -- 7.3. Heteronuclear diatomic molecules -- Exercises -- 8. Transition-metal complexes -- 8.1. An octahedral complex -- 8.2.A tetrahedral complex -- References -- Exercises.
9.1. Definitions -- 9.2. Space groups -- 9.3. The reciprocal lattice -- 9.4. Brillouin zones -- 9.5. Bloch waves and symmorphic groups -- 9.6. Point-group symmetry of Bloch waves -- 9.7. The space group of the k-vector, gsk -- 9.8. Irreducible representations of gsk -- 9.9.Compatibility of the irreducible representations of gk -- 9.10. Energy bands in the plane-wave approximation -- References -- Exercises -- 10. Application of space-group theory: Energy bands for the perovskite structure -- 10.1. The structure of the ABO3 perovskites -- 10.2. Tight-binding wavefunctions -- 10.3. The group of the wawvector, gk -- 10.4. Irreducible representations for the perovskite energy bands -- 10.5. LCAO energies for arbitrary k -- 10.6. Characteristics of the perovskite bands -- References -- Exercises -- 11. Applications of space-group theory: Lattice vibrations -- 11.1. Eigenvalue equations for lattice vibrations.
11.3. Optical branches: Two atoms per unit cell -- 11.4. Lattice vibrations for the perovskite structure -- 11.5. Localized vibrations -- References -- Exercises -- 12. Time reversal and magnetic groups -- 12.1. Time reversal in quantum mechanics -- 12.2. The effect of T on an electron wavefunction -- 12.3. Time reversal with an external field -- 12.4. Time-reversal degeneracy and energy bands -- 12.5. Magnetic crystal groups -- 12.6. Co-representations for groups with time-reversal operators -- 12.7. Degeneracies due to time-reversal symmetry -- References -- Exercises -- 13. Graphene -- 13.1. Graphene structure and energy bands -- 13.2. The analogy with the Dirac relativistic theory for massless particles -- 13.3. Graphene lattice vibrations -- References -- Exercises -- 14. Carbon nanotubes -- 14.1.A description of carbon nanotubes -- 14.2. Group theory of nanotubes -- 14.3. One-dimensional nanotube energy bands.
14.5. The nanotube density of states -- 14.6. Curvature and energy gaps -- References -- Exercises.
Subject: "The majority of all knowledge concerning atoms, molecules, and solids has been derived from applications of group theory. Taking a unique, applications-oriented approach, this book gives readers the tools needed to analyze any atomic, molecular, or crystalline solid system"--
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number URL Status Date due Barcode
Online Book (LOGIN USING YOUR MY CIU LOGIN AND PASSWORD) Online Book (LOGIN USING YOUR MY CIU LOGIN AND PASSWORD) G. Allen Fleece Library ONLINE Non-fiction QC176 (Browse shelf(Opens below)) Link to resource Available ocn894227095

Includes bibliographies and index.

Machine generated contents note: 1. Introductory example: Squarene -- 1.1. In-plane molecular vibrations of squarene -- 1.2. Reducible and irreducible representations of a group -- 1.3. Eigenvalues and eigenvectors -- 1.4. Construction of the force-constant matrix from the eigenvalues -- 1.5. Optical properties -- References -- Exercises -- 2. Molecular vibrations of isotopically substituted KB2 molecules -- 2.1. Step 1: Identify the point group and its symmetry operations -- 2.2. Step 2: Specify the coordinate system and the basis functions -- 2.3. Step 3: Determine the effects of the symmetry operations on the basis functions -- 2.4. Step 4: Construct the matrix representations for each element of the group using the basis functions -- 2.5. Step 5: Determine the number and types of irreducible representations -- 2.6. Step 6: Analyze the information contained in the decompositions -- 2.7. Step 7: Generate the symmetry functions -- 2.8. Step 8: Diagonalize the matrix eigenvalue equation.

Contents note continued: 2.9. Constructing the force-constant matrix -- 2.10. Green's function theory of isotopic molecular vibrations -- 2.11. Results for isotopically substituted forms of H2O -- References -- Exercises -- 3. Spherical symmetry and the full rotation group -- 3.1. Hydrogen-like orbitals -- 3.2. Representations of the full rotation group -- 3.3. The character of a rotation -- 3.4. Decomposition of D(l) in a non-spherical environment -- 3.5. Direct-product groups and representations -- 3.6. General properties of direct-product groups and representations -- 3.7. Selection rules for matrix elements -- 3.8. General representations of the full rotation group -- References -- Exercises -- 4. Crystal-field theory -- 4.1. Splitting of d-orbital degeneracy by a crystal field -- 4.2. Multi-electron systems -- 4.3. Jahn---Teller effects -- References -- Exercises -- 5. Electron spin and angular momentum -- 5.1. Pauli spin matrices -- 5.2. Measurement of spin.

Contents note continued: 5.3. Irreducible representations of half-integer angular momentum -- 5.4. Multi-electron spin-orbital states -- 5.5. The L---S-coupling scheme -- 5.6. Generating angular-momentum eigenstates -- 5.7. Spin---orbit interaction -- 5.8. Crystal double groups -- 5.9. The Zeeman effect (weak-magnetic-field case) -- References -- Exercises -- 6. Molecular electronic structure: The LCAO model -- 6.1.N-electron systems -- 6.2. Empirical LCAO models -- 6.3. Parameterized LCAO models -- 6.4. An example: The electronic structure of squarene -- 6.5. The electronic structure of H2O -- References -- Exercises -- 7. Electronic states of diatomic molecules -- 7.1. Bonding and antibonding states: Symmetry functions -- 7.2. The "building-up" of molecular orbitals for diatomic molecules -- 7.3. Heteronuclear diatomic molecules -- Exercises -- 8. Transition-metal complexes -- 8.1. An octahedral complex -- 8.2.A tetrahedral complex -- References -- Exercises.

Contents note continued: 9. Space groups and crystalline solids -- 9.1. Definitions -- 9.2. Space groups -- 9.3. The reciprocal lattice -- 9.4. Brillouin zones -- 9.5. Bloch waves and symmorphic groups -- 9.6. Point-group symmetry of Bloch waves -- 9.7. The space group of the k-vector, gsk -- 9.8. Irreducible representations of gsk -- 9.9.Compatibility of the irreducible representations of gk -- 9.10. Energy bands in the plane-wave approximation -- References -- Exercises -- 10. Application of space-group theory: Energy bands for the perovskite structure -- 10.1. The structure of the ABO3 perovskites -- 10.2. Tight-binding wavefunctions -- 10.3. The group of the wawvector, gk -- 10.4. Irreducible representations for the perovskite energy bands -- 10.5. LCAO energies for arbitrary k -- 10.6. Characteristics of the perovskite bands -- References -- Exercises -- 11. Applications of space-group theory: Lattice vibrations -- 11.1. Eigenvalue equations for lattice vibrations.

Contents note continued: 11.2. Acoustic-phonon branches -- 11.3. Optical branches: Two atoms per unit cell -- 11.4. Lattice vibrations for the perovskite structure -- 11.5. Localized vibrations -- References -- Exercises -- 12. Time reversal and magnetic groups -- 12.1. Time reversal in quantum mechanics -- 12.2. The effect of T on an electron wavefunction -- 12.3. Time reversal with an external field -- 12.4. Time-reversal degeneracy and energy bands -- 12.5. Magnetic crystal groups -- 12.6. Co-representations for groups with time-reversal operators -- 12.7. Degeneracies due to time-reversal symmetry -- References -- Exercises -- 13. Graphene -- 13.1. Graphene structure and energy bands -- 13.2. The analogy with the Dirac relativistic theory for massless particles -- 13.3. Graphene lattice vibrations -- References -- Exercises -- 14. Carbon nanotubes -- 14.1.A description of carbon nanotubes -- 14.2. Group theory of nanotubes -- 14.3. One-dimensional nanotube energy bands.

Contents note continued: 14.4. Metallic and semiconducting nanotubes -- 14.5. The nanotube density of states -- 14.6. Curvature and energy gaps -- References -- Exercises.

"The majority of all knowledge concerning atoms, molecules, and solids has been derived from applications of group theory. Taking a unique, applications-oriented approach, this book gives readers the tools needed to analyze any atomic, molecular, or crystalline solid system"--

COPYRIGHT NOT covered - Click this link to request copyright permission:

https://lib.ciu.edu/copyright-request-form

There are no comments on this title.

to post a comment.