Amazon cover image
Image from Amazon.com

An algebraic introduction to K-theoryBruce A. Magurn.

By: Material type: TextTextSeries: Publication details: Cambridge, UK ; New York : Cambridge University Press, (c)2002.Description: 1 online resource (xiv, 676 pages) : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781107089525
  • 9781107326002
  • 9781107095830
Subject(s): Genre/Form: LOC classification:
  • QA612 .A444 2002
Online resources: Available additional physical forms:
Contents:
Groups of Modules: K[subscript 0. -- Free Modules -- Bases -- Matrix Representations -- Absence of Dimension -- Projective Modules -- Direct Summands -- Summands of Free Modules -- Grothendieck Groups -- Semigroups of Isomorphism Classes -- Semigroups to Groups -- Grothendieck Groups -- Resolutions -- Stability for Projective Modules -- Adding Copies of R -- Stably Free Modules -- When Stably Free Modules Are Free -- Stable Rank -- Dimensions of a Ring -- Multiplying Modules -- Semirings -- Burnside Rings -- Tensor Products of Modules -- Change of Rings -- K[subscript 0. of Related Rings -- G[subscript 0. of Related Rings -- K[subscript 0. as a Functor -- The Jacobson Radical -- Localization -- Sources of K[subscript 0. -- Number Theory -- Algebraic Integers -- Dedekind Domains -- Ideal Class Groups -- Extensions and Norms -- K[subscript 0. and G[subscript 0. of Dedekind Domains -- Group Representation Theory -- Linear Representations -- Representing Finite Groups Over Fields -- Semisimple Rings -- Characters -- Groups of Matrices: K[subscript 1. -- Definition of K[subscript 1. -- Elementary Matrices -- Commutators and K[subscript 1.(R) -- Determinants -- The Bass K[subscript 1. of a Category -- Stability for K[subscript 1.(R) -- Surjective Stability -- Injective Stability -- Relative K[subscript 1. -- Congruence Subgroups of GL[subscript n](R) -- Congruence Subgroups of SL[subscript n](R) -- Mennicke Symbols -- Relations Among Matrices: K[subscript 2. -- K[subscript 2.(R) and Steinberg Symbols -- Definition and Properties of K[subscript 2.(R) -- Elements of St(R) and K[subscript 2.(R) -- Exact Sequences -- The Relative Sequence -- Excision and the Mayer-Vietoris Sequence -- The Localization Sequence -- Universal Algebras -- Presentation of Algebras -- Graded Rings -- The Tensor Algebra -- Symmetric and Exterior Algebras -- The Milnor Ring -- Tame Symbols -- Norms on Milnor K-Theory -- Matsumoto's Theorem -- Sources of K[subscript 2. -- Symbols in Arithmetic -- Hilbert Symbols -- Metric Completion of Fields -- The p-Adic Numbers and Quadratic Reciprocity -- Local Fields and Norm Residue Symbols -- Brauer Groups -- The Brauer Group of a Field -- Splitting Fields -- Twisted Group Rings -- The K[subscript 2. Connection -- A Sets, Classes, Functions -- Chain Conditions, Composition Series
Review: "The presentation is self-contained, with all the necessary background and proofs, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry.Summary: The prerequisites are minimal: just a first semester of algebra (including Galois theory and modules over a principal ideal domain). No experience with homological algebra, analysis, geometry, number theory, or topology is assumed. The author has.Summary: Selected topics can be used to construct a variety of one-semester courses; coverage of the entire text requires a full year."--Jacket.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number URL Status Date due Barcode
Online Book (LOGIN USING YOUR MY CIU LOGIN AND PASSWORD) Online Book (LOGIN USING YOUR MY CIU LOGIN AND PASSWORD) G. Allen Fleece Library ONLINE Non-fiction QA612.33 (Browse shelf(Opens below)) Link to resource Available ocn847527208

Includes bibliographies and index.

"The presentation is self-contained, with all the necessary background and proofs, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry.

The prerequisites are minimal: just a first semester of algebra (including Galois theory and modules over a principal ideal domain). No experience with homological algebra, analysis, geometry, number theory, or topology is assumed. The author has.

Selected topics can be used to construct a variety of one-semester courses; coverage of the entire text requires a full year."--Jacket.

Groups of Modules: K[subscript 0. -- Free Modules -- Bases -- Matrix Representations -- Absence of Dimension -- Projective Modules -- Direct Summands -- Summands of Free Modules -- Grothendieck Groups -- Semigroups of Isomorphism Classes -- Semigroups to Groups -- Grothendieck Groups -- Resolutions -- Stability for Projective Modules -- Adding Copies of R -- Stably Free Modules -- When Stably Free Modules Are Free -- Stable Rank -- Dimensions of a Ring -- Multiplying Modules -- Semirings -- Burnside Rings -- Tensor Products of Modules -- Change of Rings -- K[subscript 0. of Related Rings -- G[subscript 0. of Related Rings -- K[subscript 0. as a Functor -- The Jacobson Radical -- Localization -- Sources of K[subscript 0. -- Number Theory -- Algebraic Integers -- Dedekind Domains -- Ideal Class Groups -- Extensions and Norms -- K[subscript 0. and G[subscript 0. of Dedekind Domains -- Group Representation Theory -- Linear Representations -- Representing Finite Groups Over Fields -- Semisimple Rings -- Characters -- Groups of Matrices: K[subscript 1. -- Definition of K[subscript 1. -- Elementary Matrices -- Commutators and K[subscript 1.(R) -- Determinants -- The Bass K[subscript 1. of a Category -- Stability for K[subscript 1.(R) -- Surjective Stability -- Injective Stability -- Relative K[subscript 1. -- Congruence Subgroups of GL[subscript n](R) -- Congruence Subgroups of SL[subscript n](R) -- Mennicke Symbols -- Relations Among Matrices: K[subscript 2. -- K[subscript 2.(R) and Steinberg Symbols -- Definition and Properties of K[subscript 2.(R) -- Elements of St(R) and K[subscript 2.(R) -- Exact Sequences -- The Relative Sequence -- Excision and the Mayer-Vietoris Sequence -- The Localization Sequence -- Universal Algebras -- Presentation of Algebras -- Graded Rings -- The Tensor Algebra -- Symmetric and Exterior Algebras -- The Milnor Ring -- Tame Symbols -- Norms on Milnor K-Theory -- Matsumoto's Theorem -- Sources of K[subscript 2. -- Symbols in Arithmetic -- Hilbert Symbols -- Metric Completion of Fields -- The p-Adic Numbers and Quadratic Reciprocity -- Local Fields and Norm Residue Symbols -- Brauer Groups -- The Brauer Group of a Field -- Splitting Fields -- Twisted Group Rings -- The K[subscript 2. Connection -- A Sets, Classes, Functions -- Chain Conditions, Composition Series

COPYRIGHT NOT covered - Click this link to request copyright permission:

https://lib.ciu.edu/copyright-request-form

There are no comments on this title.

to post a comment.