TY - BOOK AU - Bray,John N. AU - Holt,Derek F. AU - Roney-Dougal,Colva M. TI - The maximal subgroups of the low-dimensional finite classical groups /John N. Bray, Derek F. Holt, Colva M. Roney-Dougal T2 - London Mathematical Society lecture note series SN - 9781139192576 AV - QA177 .M395 2013 PY - 2013/// CY - Cambridge PB - Cambridge University Press KW - Finite groups KW - Maximal subgroups KW - Electronic Books N1 - 2; Cover; Contents; Foreword by Martin Liebeck; Preface; 1 Introduction; 1.1 Background; 1.2 Notation; 1.3 Some basic group theory; 1.4 Finite fields and perfect fields; 1.5 Classical forms; 1.6 The classical groups and their orders; 1.7 Outer automorphisms of classical groups; 1.8 Representation theory; 1.9 Tensor products; 1.10 Small dimensions and exceptional isomorphisms; 1.11 Representations of simple groups; 1.12 The natural representations of the classical groups; 1.13 Some results from number theory; 2 The main theorem and the types of geometric subgroups; 2.1 The main theorem; 5.11 Summary of the S2*-maximals6 Containments involving S-subgroups; 6.1 Introduction; 6.2 Containments between S1- and S2*-maximal subgroups; 6.3 Containments between geometric and S*-maximal subgroups; 7 Maximal subgroups of exceptional groups; 7.1 Introduction; 7.2 The maximal subgroups of Sp4(2e) and extensions; 7.3 The maximal subgroups of Sz(q) and extensions; 7.4 The maximal subgroups of G2(2e) and extensions; 8 Tables; 8.1 Description of the tables; 8.2 The tables; References; Index of Definitions; 2; b N2 - Classifies the maximal subgroups of the finite groups of Lie type up to dimension 12, using theoretical and computational methods UR - https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=592736&site=eds-live&custid=s3260518 ER -