TY - BOOK AU - Gomez Herrera,Juan Esteban TI - Rarefied Gas Flows and Dynamic Plasma Phenomena in Electric Propulsion Systems SN - 3736963246 AV - TL709 .R374 2020 PY - 2020/// CY - Göttingen PB - Cuvillier Verlag KW - Propulsion systems KW - Jet propulsion KW - Space launch industry KW - Electronic Books N1 - Description based upon print version of record; 6.3 Particle and force weighting; 2; Intro --; Chapter 1 Introduction --; 1.1 Motivation --; 1.2 Basic setup --; 1.3 Goals and thesis outline --; Chapter 2 Theoretical Principles --; 2.1 Knudsen number and flow regimes --; 2.2 Lagrangian and Eulerian specification of the flowfield --; 2.3 Conservation of mass --; 2.4 Conservation of momentum --; 2.5 Conservation of energy --; 2.6 Ideal gas --; 2.7 The Laval nozzle --; 2.8 Fundamentals of plasma --; 2.8.1 Physical properties of plasma --; 2.9 Kinetic theory of gases --; 2.9.1 Fundamental concepts --; 2.9.2 Velocity distribution function and macroscopic properties --; 2.9.3 Maxwell distribution; 2.9.4 Boltzmann equation --; 2.10 Summary --; Chapter 3 Computational Methods --; 3.1 Methods based on transport equations --; 3.1.1 Finite Difference Method --; 3.1.2 Finite Volume Method --; 3.1.3 Methods for unsteady problems --; 3.1.4 Solution algorithms for the Navier-Stokes equations --; 3.2 Direct Simulation Monte Carlo (DSMC) --; 3.2.1 Molecular transport --; 3.2.2 Molecular collisions --; 3.2.3 Implementation of boundary conditions --; 3.2.4 Macroscopic properties --; 3.3 Particle-In-Cell Method (PIC) --; 3.3.1 Particle motion --; Lorentz solver --; 3.3.2 Field equations --; Maxwell solver; 3.3.3 Particle and force weighting --; 3.4 Summary --; Chapter 4 Transonic Gas Flows AcrossMultiple Flow Regimes --; 4.1 State of the art and previous studies --; 4.2 Experimental setup --; 4.2.1 Vacuum and measurement systems --; 4.2.2 Arcjet thruster and Laval nozzle --; 4.2.3 Experimental series --; 4.3 Numerical setup --; 4.3.1 Solved equations and numerical solver --; 4.3.2 Numerical mesh and boundary conditions --; 4.3.3 Numerical setup for DSMC simulations --; 4.4 Results and discussion --; 4.4.1 Experimental results --; 4.4.2 Navier-Stokes simulations --; 4.4.3 DSMC results; 4.4.4 Comparison between Navier-Stokes and experimental results --; 4.4.5 Knudsen-dependent correcting function for the dimensionlesspressure drop --; 4.4.6 Molar mass dependency of the Knudsen function coefficients --; 4.4.7 Thrust and specific impulse --; 4.5 Summary --; Chapter 5 Development of a Kinetic PlasmaModel for Electric PropulsionSystems --; 5.1 Electric propulsion systems for spacecraft --; 5.2 State of the art and previous works --; 5.2.1 Resistojets --; 5.2.2 Arcjet thrusters --; 5.2.3 Ion thrusters --; 5.2.4 Hall thrusters --; 5.3 Development of a kinetic plasma model; 5.3.1 General modelling concept --; 5.3.2 Basis DSMC solver --; 5.3.3 Implementation of PIC algorithm --; 5.3.4 Coulomb collisions with the MCC algorithm --; 5.3.5 Electron-neutral collisions --; 5.3.6 Recombination --; 5.3.7 Boundary conditions in dsmcPlasmaFoam --; 5.3.8 Numerical aspects --; 5.3.9 Global model implementation in OpenFOAM --; 5.4 Summary --; Chapter 6 Validation of dsmcPlasmaFoam --; 6.1 Maxwell solver --; 6.2 Lorentz solver --; 6.2.1 Solver behaviour without implementation of the Leapfrog algorithm --; 6.2.2 Solver behaviour with implemented Leapfrog algorithm; 2; b UR - httpss://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2728393&site=eds-live&custid=s3260518 ER -