Amazon cover image
Image from Amazon.com

Multiscale and multiresolution approaches in turbulence LES, DES and hybrid RANS/LES methods : applications and guidelines / Pierre Sagaut, Sébastien Deck, Marc Terracol.

By: Contributor(s): Material type: TextTextPublication details: London : Imperial College Press ; (c)2013.; Singapore : Distributed by World Scientific Pub. Company, (c)2013.Edition: second editionDescription: 1 online resource (xviii, 427 pages) : illustrations (some color)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781848169876
Subject(s): Genre/Form: LOC classification:
  • TA357 .M858 2013
Online resources: Available additional physical forms:
Contents:
2. Turbulence simulation and scale separation. 2.1. Numerical simulation of turbulent flows. 2.2. Reducing the cost of the simulations. 2.3. The averaging approach: Reynolds-Averaged Numerical Simulation (RANS). 2.4. The Large-Eddy Simulation approach (LES). 2.5. Multilevel/multiresolution methods. 2.6. Summary -- 3. Statistical multiscale modelling. 3.1. General. 3.2. Exact governing equations for the multiscale problem. 3.3. Spectral closures for band-integrated approaches. 3.4. A few multiscale models for band-integrated approaches. 3.5. Spectral closures for local approaches. 3.6. Achievements and open issues -- 4. Multiscale subgrid models: self-adaptivity. 4.1. Fundamentals of subgrid modelling. 4.2. Germano-type dynamic subgrid models. 4.3. Self-similarity based dynamic subgrid models. 4.4. Variational multiscale methods and related subgrid viscosity models -- 5. Structural multiscale subgrid models: small scales estimations. 5.1. Small-scale reconstruction methods: deconvolution. 5.2. Small scales reconstruction: multifractal subgrid-scale modelling. 5.3. Variational multiscale methods. 5.4. Multigrid-based decomposition. 5.5. Global multigrid approaches: cycling methods. 5.6. Zonal multigrid/multidomain methods -- 6. Unsteady turbulence simulation on self-adaptive grids. 6.1. Turbulence and self-adaptivity: expectations and issues. 6.2. Adaptive multilevel DNS and LES. 6.3. Adaptive wavelet-based methods: CVS, SCALES. 6.4. DNS and LES with optimal AMR -- 7. Global hybrid RANS/LES methods. 7.1. Bridging between hybrid RANS/LES methods and multiscale methods. 7.2. Motivation and classification of RANS/LES methods. 7.3. Unsteady statistical modelling approaches. 7.4. Global hybrid approaches -- 8. Zonal RANS/LES methods. 8.1. Inlet data generation -- mapping techniques. 8.2. Synthetic turbulence. 8.3. Forcing methods -- 9. Feedback from numerical experiments. 9.1. Flow physics classification and modelling strategy suitability. 9.2. Illustrative examples. 9.3. Further discussion.
Subject: The book aims to provide the reader with an updated general presentation of multiscale/multiresolution approaches in turbulent flow simulations. All modern approaches (LES, hybrid RANS/LES, DES, SAS) are discussed and recast in a global comprehensive framework. Both theoretical features and practical implementation details are addressed. Some full scale applications are described, to provide the reader with relevant guidelines to facilitate a future use of these methods.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Includes bibliographies and index.

1. A brief introduction to turbulence. 1.1. Common features of turbulent flows. 1.2. Turbulent scales and complexity of a turbulent field. 1.3. Inter-scale coupling in turbulent flows -- 2. Turbulence simulation and scale separation. 2.1. Numerical simulation of turbulent flows. 2.2. Reducing the cost of the simulations. 2.3. The averaging approach: Reynolds-Averaged Numerical Simulation (RANS). 2.4. The Large-Eddy Simulation approach (LES). 2.5. Multilevel/multiresolution methods. 2.6. Summary -- 3. Statistical multiscale modelling. 3.1. General. 3.2. Exact governing equations for the multiscale problem. 3.3. Spectral closures for band-integrated approaches. 3.4. A few multiscale models for band-integrated approaches. 3.5. Spectral closures for local approaches. 3.6. Achievements and open issues -- 4. Multiscale subgrid models: self-adaptivity. 4.1. Fundamentals of subgrid modelling. 4.2. Germano-type dynamic subgrid models. 4.3. Self-similarity based dynamic subgrid models. 4.4. Variational multiscale methods and related subgrid viscosity models -- 5. Structural multiscale subgrid models: small scales estimations. 5.1. Small-scale reconstruction methods: deconvolution. 5.2. Small scales reconstruction: multifractal subgrid-scale modelling. 5.3. Variational multiscale methods. 5.4. Multigrid-based decomposition. 5.5. Global multigrid approaches: cycling methods. 5.6. Zonal multigrid/multidomain methods -- 6. Unsteady turbulence simulation on self-adaptive grids. 6.1. Turbulence and self-adaptivity: expectations and issues. 6.2. Adaptive multilevel DNS and LES. 6.3. Adaptive wavelet-based methods: CVS, SCALES. 6.4. DNS and LES with optimal AMR -- 7. Global hybrid RANS/LES methods. 7.1. Bridging between hybrid RANS/LES methods and multiscale methods. 7.2. Motivation and classification of RANS/LES methods. 7.3. Unsteady statistical modelling approaches. 7.4. Global hybrid approaches -- 8. Zonal RANS/LES methods. 8.1. Inlet data generation -- mapping techniques. 8.2. Synthetic turbulence. 8.3. Forcing methods -- 9. Feedback from numerical experiments. 9.1. Flow physics classification and modelling strategy suitability. 9.2. Illustrative examples. 9.3. Further discussion.

The book aims to provide the reader with an updated general presentation of multiscale/multiresolution approaches in turbulent flow simulations. All modern approaches (LES, hybrid RANS/LES, DES, SAS) are discussed and recast in a global comprehensive framework. Both theoretical features and practical implementation details are addressed. Some full scale applications are described, to provide the reader with relevant guidelines to facilitate a future use of these methods.

COPYRIGHT NOT covered - Click this link to request copyright permission:

https://lib.ciu.edu/copyright-request-form

There are no comments on this title.

to post a comment.