Discrete orthogonal polynomials asymptotics and applications / J. Baik ... [and others.
Material type: TextSeries: Publication details: Princeton : Princeton University Press, (c)2007.Description: 1 online resource (vi, 170 pages) : illustrationsContent type:- text
- computer
- online resource
- 9781400837137
- QA404 .D573 2007
- COPYRIGHT NOT covered - Click this link to request copyright permission: https://lib.ciu.edu/copyright-request-form
Item type | Current library | Collection | Call number | URL | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
Online Book (LOGIN USING YOUR MY CIU LOGIN AND PASSWORD) | G. Allen Fleece Library ONLINE | Non-fiction | QA404.5 (Browse shelf(Opens below)) | Link to resource | Available | ocn829714549 |
Browsing G. Allen Fleece Library shelves, Shelving location: ONLINE, Collection: Non-fiction Close shelf browser (Hides shelf browser)
Includes bibliographies and index.
Asymptotics of General Discrete Orthogonal Polynomials in the Complex Plane -- Applications -- An Equivalent Riemann-Hilbert Problem -- Asymptotic Analysis -- Discrete Orthogonal Polynomials: Proofs of Theorems Stated in 2.3 -- Universality: Proofs of Theorems Stated in 3.3.
"This book describes the theory and applications of discrete orthogonal polynomials - polynomials that are orthogonal on a finite set. Unlike other books, Discrete Orthogonal Polynomials addresses completely general weight functions and presents a new methodology for handling the discrete weights case." "J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin & P. D. Miller focus on asymptotic aspects of general, nonclassical discrete orthogonal polynomials and set out applications of current interest. Topics covered include the probability theory of discrete orthogonal polynomial ensembles and the continuum limit of the Toda lattice. The primary concern throughout is the asymptotic behavior of discrete orthogonal polynomials for general, nonclassical measures, in the joint limit where the degree increases as some fraction of the total number of points of collocation. The book formulates the orthogonality conditions defining these polynomials as a kind of Riemann-Hilbert problem and then generalizes the steepest descent method for such a problem to carry out the necessary asymptotic analysis."--BOOK JACKET.
COPYRIGHT NOT covered - Click this link to request copyright permission:
There are no comments on this title.