Amazon cover image
Image from Amazon.com

Rational points on curves over finite fields theory and applications / Harald Niederreiter, Chaoping Xing.

By: Contributor(s): Material type: TextTextSeries: Publication details: Cambridge ; New York : Cambridge University Press, (c)2001.Description: 1 online resource (x, 245 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781107089297
Subject(s): Genre/Form: LOC classification:
  • QA565 .R385 2001
Online resources: Available additional physical forms:
Contents:
Background on Function Fields -- Riemann-Roch Theorem -- Divisor Class Groups and Ideal Class Groups -- Algebraic Extensions and the Hurwitz Formula -- Ramification Theory of Galois Extensions -- Constant Field Extensions -- Zeta Functions and Rational Places -- Class Field Theory -- Local Fields -- Newton Polygons -- Ramification Groups and Conductors -- Global Fields -- Ray Class Fields and Hilbert Class Fields -- Narrow Ray Class Fields -- Class Field Towers -- Explicit Function Fields -- Kummer and Artin-Schreier Extensions -- Cyclotomic Function Fields -- Drinfeld Modules of Rank 1 -- Function Fields with Many Rational Places -- Function Fields from Hilbert Class Fields -- Function Fields from Narrow Ray Class Fields -- The First Construction -- The Second Construction -- The Third Construction -- Function Fields from Cyclotomic Fields -- Explicit Function Fields -- Asymptotic Results -- Asymptotic Behavior of Towers -- The Lower Bound of Serre -- Further Lower Bounds for A(q[superscript m]) -- Explicit Towers -- Lower Bounds on A(2), A(3), and A(5) -- Applications to Algebraic Coding Theory -- Goppa's Algebraic-Geometry Codes -- Beating the Asymptotic Gilbert-Varshamov Bound -- NXL Codes -- XNL Codes -- A Propagation Rule for Linear Codes -- Applications to Cryptography -- Background on Stream Ciphers and Linear Complexity -- Constructions of Almost Perfect Sequences -- A Construction of Perfect Hash Families -- Hash Families and Authentication Schemes -- Applications to Low-Discrepancy Sequences.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number URL Status Date due Barcode
Online Book (LOGIN USING YOUR MY CIU LOGIN AND PASSWORD) Online Book (LOGIN USING YOUR MY CIU LOGIN AND PASSWORD) G. Allen Fleece Library ONLINE Non-fiction QA565 (Browse shelf(Opens below)) Link to resource Available ocn846496057

Includes bibliographies and index.

Background on Function Fields -- Riemann-Roch Theorem -- Divisor Class Groups and Ideal Class Groups -- Algebraic Extensions and the Hurwitz Formula -- Ramification Theory of Galois Extensions -- Constant Field Extensions -- Zeta Functions and Rational Places -- Class Field Theory -- Local Fields -- Newton Polygons -- Ramification Groups and Conductors -- Global Fields -- Ray Class Fields and Hilbert Class Fields -- Narrow Ray Class Fields -- Class Field Towers -- Explicit Function Fields -- Kummer and Artin-Schreier Extensions -- Cyclotomic Function Fields -- Drinfeld Modules of Rank 1 -- Function Fields with Many Rational Places -- Function Fields from Hilbert Class Fields -- Function Fields from Narrow Ray Class Fields -- The First Construction -- The Second Construction -- The Third Construction -- Function Fields from Cyclotomic Fields -- Explicit Function Fields -- Asymptotic Results -- Asymptotic Behavior of Towers -- The Lower Bound of Serre -- Further Lower Bounds for A(q[superscript m]) -- Explicit Towers -- Lower Bounds on A(2), A(3), and A(5) -- Applications to Algebraic Coding Theory -- Goppa's Algebraic-Geometry Codes -- Beating the Asymptotic Gilbert-Varshamov Bound -- NXL Codes -- XNL Codes -- A Propagation Rule for Linear Codes -- Applications to Cryptography -- Background on Stream Ciphers and Linear Complexity -- Constructions of Almost Perfect Sequences -- A Construction of Perfect Hash Families -- Hash Families and Authentication Schemes -- Applications to Low-Discrepancy Sequences.

COPYRIGHT NOT covered - Click this link to request copyright permission:

https://lib.ciu.edu/copyright-request-form

There are no comments on this title.

to post a comment.