Amazon cover image
Image from Amazon.com

Abstraction and Infinity.

By: Material type: TextTextPublication details: [Place of publication not identified] : OUP Premium : (c)2016.; OUP Oxford, (c)2016.Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780191063800
Subject(s): Genre/Form: LOC classification:
  • QA9 .A278 2016
Online resources: Available additional physical forms:
Contents:
Subject: Mancosu offers an original investigation of key notions in mathematics: abstraction and infinity, and their interaction. He gives a historical analysis of the theorizing of definitions by abstraction, and explores a novel approach to measuring the size of infinite sets, showing how this leads to deep mathematical and philosophical problems.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number URL Status Date due Barcode
Online Book (LOGIN USING YOUR MY CIU LOGIN AND PASSWORD) Online Book (LOGIN USING YOUR MY CIU LOGIN AND PASSWORD) G. Allen Fleece Library ONLINE Non-fiction QA9 (Browse shelf(Opens below)) Link to resource Available ocn965825348

Includes bibliographies and index.

Cover; Abstraction and Infinity; Copyright; Dedication; Contents; Introduction; Abstraction; Infinity; Abstraction and Infinity; Acknowledgements; 1: The mathematical practice of definitions by abstraction from Euclid to Frege (and beyond); 1.1 Introduction; 1.2 Equivalence relations, invariants, and definitions by abstraction; 1.3 Mathematical practice and definitions by abstraction in classical geometry; 1.4 Definitions by abstraction in number theory, number systems, geometry, and set theory during the XIXth century; 1.4.1 Number theory; 1.4.2 Systems of Numbers and abstraction principles

1.4.3 Complex numbers and geometrical calculus1.4.4 SetTheory; 1.5 Conclusion; 2: The logical and philosophical reflection on definitions by abstraction: From Frege to the Peano school and Russell; 2.1 Frege's Grundlagen, section ; 2.1.1 The Grassmannian influence on Frege: Abstraction principles in geometry; 2.1.2 The proper conceptual order and Frege's criticism of the definition of parallels in terms of directions; 2.1.3 Aprioricity claims for the concept of direction: Schlömilch's Geometrie des Maasses; 2.1.4 The debate over Schlömilch's theory of directions

2.2 The logical discussion on definitions by abstraction2.2.1 Peano and his school; 2.2.2 Russell and Couturat; 2.2.3 Padoa on definitions by abstraction and further developments; 2.3 Conclusion; 2.4 Appendix; 3: Measuring the size of infinite collections of natural numbers: Was Cantor's theory of infinite number inevitable?; 3.1 Introduction; 3.2 Paradoxes of the infinite up to the middle ages; 3.3 Galileo and Leibniz; 3.4 Emmanuel Maignan; 3.5 Bolzano and Cantor; 3.6 Contemporary mathematical approaches tomeasuring the size of countably infinite sets

3.6.1 Katz's "Sets and their Sizes" (1981)3.6.2 A theory of numerosities; 3.7 Philosophical remarks; 3.7.1 An historiographical lesson; 3.7.2 Gödel's claim that Cantor's theory of size for infinite sets is inevitable; 3.7.3 Generalization, explanation, fruitfulness; 3.8 Conclusion; 4: In good company? On Hume's Principle and the assignment of numbers to infinite concepts; 4.1 Introduction; 4.2 Neo-logicism and Hume's Principle; 4.3 Numerosity functions: Schröder, Peano, and Bolzano; 4.4 A plethora of good abstractions; 4.5 Neo-logicism and Finite Hume's Principle

4.6 The 'good company' objection as a generalization of Heck's argument4.7 HP's good companions and the problem of cross-sortal identity; 4.8 Conclusion; 4.9 Appendix 1; 4.10 Appendix 2 ; Bibliography; Name Index

Mancosu offers an original investigation of key notions in mathematics: abstraction and infinity, and their interaction. He gives a historical analysis of the theorizing of definitions by abstraction, and explores a novel approach to measuring the size of infinite sets, showing how this leads to deep mathematical and philosophical problems.

COPYRIGHT NOT covered - Click this link to request copyright permission:

https://lib.ciu.edu/copyright-request-form

There are no comments on this title.

to post a comment.