Applications of Lévy processes /edited by Oleg Kudryavtsev, Southern Federal University, Rostov-on-Don, Russia; Rostov Branch of the Russian Customs Academy, Rostov-on-Don, Russia, Antonino Zanette, Department of Economics and Statistics, University of Udine, Udine, Italy.
Material type: TextSeries: Mathematics research developmentsDescription: 1 online resourceContent type:- text
- computer
- online resource
- 9781536198492
- QA274 .A675 2021
- COPYRIGHT NOT covered - Click this link to request copyright permission: https://lib.ciu.edu/copyright-request-form
Item type | Current library | Collection | Call number | URL | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
Online Book (LOGIN USING YOUR MY CIU LOGIN AND PASSWORD) | G. Allen Fleece Library ONLINE | Non-fiction | QA274.73 (Browse shelf(Opens below)) | Link to resource | Available | on1264730485 |
Includes bibliographies and index.
"Lévy processes have found applications in various fields, including physics, chemistry, long-term climate change, telephone communication, and finance. The most famous Lévy process in finance is the Black-Scholes model. This book presents important financial applications of Lévy processes. The Editors consider jump-diffusion and pure non-Gaussian Lévy processes, the multi-dimensional Black-Scholes model, and regime-switching Lévy models. This book is comprised of seven chapters that focus on different approaches to solving applied problems under Lévy processes: Monte Carlo simulations, machine learning, the frame projection method, dynamic programming, the Fourier cosine series expansion, finite difference schemes, and the Wiener-Hopf factorization. Various numerical examples are carefully presented in tables and figures to illustrate the methods designed in the book"--
Intro -- APPLICATIONS OFLÉVY PROCESSES -- APPLICATIONS OFLÉVY PROCESSES -- CONTENTS -- PREFACE -- Chapter 1VARIANCE REDUCTION APPLIED TOMACHINE LEARNING FOR PRICINGBERMUDAN/AMERICAN OPTIONSIN HIGH DIMENSION -- Abstract -- 1. INTRODUCTION -- 2. AMERICAN OPTIONS IN THE MULTI-DIMENSIONAL BLACK-SCHOLES MODEL -- 3. MACHINE LEARNING FOR AMERICAN OPTIONSIN THE MULTI-DIMENSIONAL BLACK-SCHOLESMODEL -- 3.1. Gaussian Process Regression -- 3.2. Machine Learning Exact Integration for European Options -- 3.3. Machine Learning Control Variate Algorithm for AmericanOptions -- 3.3.1. The GPR Monte CarloMethod
3.3.2. The GPR Monte Carlo Control Variate Method -- 3.3.3. The Control Variate for GPR-Tree and GRP-EI -- 4. NUMERICAL RESULTS -- 4.1. Geometric and Arithmetic Basket Put Options -- 4.2. Call on theMaximum Option -- 4.3. Variance Reduction -- CONCLUSION -- REFERENCES -- Chapter 2A MACHINE LEARNING APPROACH TOOPTION PRICING UNDER LÉ VY PROCESSES -- Abstract -- 1. INTRODUCTION -- 1.1. Machine Learning in Finance -- advance.1.2. -- 2. OPTION PRICING -- 2.1. The Applications in Option Pricing -- 2.2. Lévy Processes -- 3. MACHINE LEARNING APPROACH -- 4. CGMY MODEL CALIBRATION WITH GPR
5. ARTIFICIAL NEURAL NETWORKS -- 5.1. Feedforward ANN -- 5.2. Recurrent NN -- 5.3. Long/Short Term -- 5.4. Gated Recurrent Units -- 5.5. Bidirectional Recurrent Neural Networks -- 5.6. BoltzmannMachines -- 5.7. Restricted BoltzmannMachines -- 5.8. Convolutional Networks -- 6. ACTIVATION FUNCTIONS -- 6.1. Step Function -- 6.2. Linear Activation Function -- 6.3. Sigmoid Activation Function -- 6.4. Hyperbolic Tangent Activation Function -- 6.5. Softsign Activation Function -- 6.6. Basic Rectified Linear Unit (ReLU)The -- 6.7. Leaky ( -- 6.8. Modified Rectifiers (MELU)Numerous attempts have
6.9. Softplus Activation Function -- 7. APPLYING A FF ANN TO SOLVE THE MODELCALIBRATION PROBLEM -- 7.1. Historical Data Preparation -- 7.2. Synthetic Data -- 7.3. Training the Network -- 7.4. Market States ClassificationFinancial markets -- 8. PRICING OPTIONS IN THE CGMY MODEL VIA AFF ANN -- CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- Chapter 3ON SWING OPTION PRICINGUNDER LÉ VY PROCESS DYNAMICS -- Abstract -- 1. INTRODUCTION -- 2. SWING OPTIONS -- 2.1. Policy Constraints -- 2.1.1. Volume Penalties -- 2.1.2. Ramping Constraints -- 2.2. Cash Flows -- 2.2.1. The Locally Constrained Case
2.3. Swing Rights and Recovery -- 3. MODELS FOR THE UNDERLYING -- 3.1. Exponential Lévy Dynamics -- 3.2. Mean-Reverting -- 4. PRICING METHODS -- 4.1. A Discrete Time Formulation -- 4.1.1. Value Functions -- 4.1.2. Optimal Swing Policies -- 4.2. Trees and Grids -- 4.3. Monte Carlo -- 4.4. PROJ Method -- 4.4.1. Value Functions -- 4.4.2. Pure Fixed Rights -- 4.4.3. Numerical Examples: Fixed Rights -- 4.5. A Continuous Time Formulation -- 4.5.1. Variational Inequalities -- 4.6. COSMethod -- 4.7. PROJ: American Contracts -- 4.7.1. Algorithm Structure -- 4.7.2. Numerical Example: Constant Recovery
COPYRIGHT NOT covered - Click this link to request copyright permission:
There are no comments on this title.