Amazon cover image
Image from Amazon.com

Applications of Lévy processes /edited by Oleg Kudryavtsev, Southern Federal University, Rostov-on-Don, Russia; Rostov Branch of the Russian Customs Academy, Rostov-on-Don, Russia, Antonino Zanette, Department of Economics and Statistics, University of Udine, Udine, Italy.

Contributor(s): Material type: TextTextSeries: Mathematics research developmentsDescription: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781536198492
Subject(s): Genre/Form: LOC classification:
  • QA274 .A675 2021
Online resources: Available additional physical forms:
Contents:
APPLICATIONS OFLÉVY PROCESSES -- APPLICATIONS OFLÉVY PROCESSES -- CONTENTS -- PREFACE -- Chapter 1VARIANCE REDUCTION APPLIED TOMACHINE LEARNING FOR PRICINGBERMUDAN/AMERICAN OPTIONSIN HIGH DIMENSION -- Abstract -- 1. INTRODUCTION -- 2. AMERICAN OPTIONS IN THE MULTI-DIMENSIONAL BLACK-SCHOLES MODEL -- 3. MACHINE LEARNING FOR AMERICAN OPTIONSIN THE MULTI-DIMENSIONAL BLACK-SCHOLESMODEL -- 3.1. Gaussian Process Regression -- 3.2. Machine Learning Exact Integration for European Options -- 3.3. Machine Learning Control Variate Algorithm for AmericanOptions -- 3.3.1. The GPR Monte CarloMethod
3.3.3. The Control Variate for GPR-Tree and GRP-EI -- 4. NUMERICAL RESULTS -- 4.1. Geometric and Arithmetic Basket Put Options -- 4.2. Call on theMaximum Option -- 4.3. Variance Reduction -- CONCLUSION -- REFERENCES -- Chapter 2A MACHINE LEARNING APPROACH TOOPTION PRICING UNDER LÉ VY PROCESSES -- Abstract -- 1. INTRODUCTION -- 1.1. Machine Learning in Finance -- advance.1.2. -- 2. OPTION PRICING -- 2.1. The Applications in Option Pricing -- 2.2. Lévy Processes -- 3. MACHINE LEARNING APPROACH -- 4. CGMY MODEL CALIBRATION WITH GPR
5.1. Feedforward ANN -- 5.2. Recurrent NN -- 5.3. Long/Short Term -- 5.4. Gated Recurrent Units -- 5.5. Bidirectional Recurrent Neural Networks -- 5.6. BoltzmannMachines -- 5.7. Restricted BoltzmannMachines -- 5.8. Convolutional Networks -- 6. ACTIVATION FUNCTIONS -- 6.1. Step Function -- 6.2. Linear Activation Function -- 6.3. Sigmoid Activation Function -- 6.4. Hyperbolic Tangent Activation Function -- 6.5. Softsign Activation Function -- 6.6. Basic Rectified Linear Unit (ReLU)The -- 6.7. Leaky ( -- 6.8. Modified Rectifiers (MELU)Numerous attempts have
7. APPLYING A FF ANN TO SOLVE THE MODELCALIBRATION PROBLEM -- 7.1. Historical Data Preparation -- 7.2. Synthetic Data -- 7.3. Training the Network -- 7.4. Market States ClassificationFinancial markets -- 8. PRICING OPTIONS IN THE CGMY MODEL VIA AFF ANN -- CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- Chapter 3ON SWING OPTION PRICINGUNDER LÉ VY PROCESS DYNAMICS -- Abstract -- 1. INTRODUCTION -- 2. SWING OPTIONS -- 2.1. Policy Constraints -- 2.1.1. Volume Penalties -- 2.1.2. Ramping Constraints -- 2.2. Cash Flows -- 2.2.1. The Locally Constrained Case
3. MODELS FOR THE UNDERLYING -- 3.1. Exponential Lévy Dynamics -- 3.2. Mean-Reverting -- 4. PRICING METHODS -- 4.1. A Discrete Time Formulation -- 4.1.1. Value Functions -- 4.1.2. Optimal Swing Policies -- 4.2. Trees and Grids -- 4.3. Monte Carlo -- 4.4. PROJ Method -- 4.4.1. Value Functions -- 4.4.2. Pure Fixed Rights -- 4.4.3. Numerical Examples: Fixed Rights -- 4.5. A Continuous Time Formulation -- 4.5.1. Variational Inequalities -- 4.6. COSMethod -- 4.7. PROJ: American Contracts -- 4.7.1. Algorithm Structure -- 4.7.2. Numerical Example: Constant Recovery
Subject: "Lévy processes have found applications in various fields, including physics, chemistry, long-term climate change, telephone communication, and finance. The most famous Lévy process in finance is the Black-Scholes model. This book presents important financial applications of Lévy processes. The Editors consider jump-diffusion and pure non-Gaussian Lévy processes, the multi-dimensional Black-Scholes model, and regime-switching Lévy models. This book is comprised of seven chapters that focus on different approaches to solving applied problems under Lévy processes: Monte Carlo simulations, machine learning, the frame projection method, dynamic programming, the Fourier cosine series expansion, finite difference schemes, and the Wiener-Hopf factorization. Various numerical examples are carefully presented in tables and figures to illustrate the methods designed in the book"--
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number URL Status Date due Barcode
Online Book (LOGIN USING YOUR MY CIU LOGIN AND PASSWORD) Online Book (LOGIN USING YOUR MY CIU LOGIN AND PASSWORD) G. Allen Fleece Library ONLINE Non-fiction QA274.73 (Browse shelf(Opens below)) Link to resource Available on1264730485

Includes bibliographies and index.

"Lévy processes have found applications in various fields, including physics, chemistry, long-term climate change, telephone communication, and finance. The most famous Lévy process in finance is the Black-Scholes model. This book presents important financial applications of Lévy processes. The Editors consider jump-diffusion and pure non-Gaussian Lévy processes, the multi-dimensional Black-Scholes model, and regime-switching Lévy models. This book is comprised of seven chapters that focus on different approaches to solving applied problems under Lévy processes: Monte Carlo simulations, machine learning, the frame projection method, dynamic programming, the Fourier cosine series expansion, finite difference schemes, and the Wiener-Hopf factorization. Various numerical examples are carefully presented in tables and figures to illustrate the methods designed in the book"--

Intro -- APPLICATIONS OFLÉVY PROCESSES -- APPLICATIONS OFLÉVY PROCESSES -- CONTENTS -- PREFACE -- Chapter 1VARIANCE REDUCTION APPLIED TOMACHINE LEARNING FOR PRICINGBERMUDAN/AMERICAN OPTIONSIN HIGH DIMENSION -- Abstract -- 1. INTRODUCTION -- 2. AMERICAN OPTIONS IN THE MULTI-DIMENSIONAL BLACK-SCHOLES MODEL -- 3. MACHINE LEARNING FOR AMERICAN OPTIONSIN THE MULTI-DIMENSIONAL BLACK-SCHOLESMODEL -- 3.1. Gaussian Process Regression -- 3.2. Machine Learning Exact Integration for European Options -- 3.3. Machine Learning Control Variate Algorithm for AmericanOptions -- 3.3.1. The GPR Monte CarloMethod

3.3.2. The GPR Monte Carlo Control Variate Method -- 3.3.3. The Control Variate for GPR-Tree and GRP-EI -- 4. NUMERICAL RESULTS -- 4.1. Geometric and Arithmetic Basket Put Options -- 4.2. Call on theMaximum Option -- 4.3. Variance Reduction -- CONCLUSION -- REFERENCES -- Chapter 2A MACHINE LEARNING APPROACH TOOPTION PRICING UNDER LÉ VY PROCESSES -- Abstract -- 1. INTRODUCTION -- 1.1. Machine Learning in Finance -- advance.1.2. -- 2. OPTION PRICING -- 2.1. The Applications in Option Pricing -- 2.2. Lévy Processes -- 3. MACHINE LEARNING APPROACH -- 4. CGMY MODEL CALIBRATION WITH GPR

5. ARTIFICIAL NEURAL NETWORKS -- 5.1. Feedforward ANN -- 5.2. Recurrent NN -- 5.3. Long/Short Term -- 5.4. Gated Recurrent Units -- 5.5. Bidirectional Recurrent Neural Networks -- 5.6. BoltzmannMachines -- 5.7. Restricted BoltzmannMachines -- 5.8. Convolutional Networks -- 6. ACTIVATION FUNCTIONS -- 6.1. Step Function -- 6.2. Linear Activation Function -- 6.3. Sigmoid Activation Function -- 6.4. Hyperbolic Tangent Activation Function -- 6.5. Softsign Activation Function -- 6.6. Basic Rectified Linear Unit (ReLU)The -- 6.7. Leaky ( -- 6.8. Modified Rectifiers (MELU)Numerous attempts have

6.9. Softplus Activation Function -- 7. APPLYING A FF ANN TO SOLVE THE MODELCALIBRATION PROBLEM -- 7.1. Historical Data Preparation -- 7.2. Synthetic Data -- 7.3. Training the Network -- 7.4. Market States ClassificationFinancial markets -- 8. PRICING OPTIONS IN THE CGMY MODEL VIA AFF ANN -- CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- Chapter 3ON SWING OPTION PRICINGUNDER LÉ VY PROCESS DYNAMICS -- Abstract -- 1. INTRODUCTION -- 2. SWING OPTIONS -- 2.1. Policy Constraints -- 2.1.1. Volume Penalties -- 2.1.2. Ramping Constraints -- 2.2. Cash Flows -- 2.2.1. The Locally Constrained Case

2.3. Swing Rights and Recovery -- 3. MODELS FOR THE UNDERLYING -- 3.1. Exponential Lévy Dynamics -- 3.2. Mean-Reverting -- 4. PRICING METHODS -- 4.1. A Discrete Time Formulation -- 4.1.1. Value Functions -- 4.1.2. Optimal Swing Policies -- 4.2. Trees and Grids -- 4.3. Monte Carlo -- 4.4. PROJ Method -- 4.4.1. Value Functions -- 4.4.2. Pure Fixed Rights -- 4.4.3. Numerical Examples: Fixed Rights -- 4.5. A Continuous Time Formulation -- 4.5.1. Variational Inequalities -- 4.6. COSMethod -- 4.7. PROJ: American Contracts -- 4.7.1. Algorithm Structure -- 4.7.2. Numerical Example: Constant Recovery

COPYRIGHT NOT covered - Click this link to request copyright permission:

https://lib.ciu.edu/copyright-request-form

There are no comments on this title.

to post a comment.