Amazon cover image
Image from Amazon.com

Rarefied Gas Flows and Dynamic Plasma Phenomena in Electric Propulsion Systems

By: Material type: TextTextPublication details: Göttingen : Cuvillier Verlag, (c)2020.Description: 1 online resource (369 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 3736963246
  • 9783736963245
Subject(s): Genre/Form: LOC classification:
  • TL709 .R374 2020
Online resources: Available additional physical forms:
Contents:
Chapter 1 Introduction -- 1.1 Motivation -- 1.2 Basic setup -- 1.3 Goals and thesis outline -- Chapter 2 Theoretical Principles -- 2.1 Knudsen number and flow regimes -- 2.2 Lagrangian and Eulerian specification of the flowfield -- 2.3 Conservation of mass -- 2.4 Conservation of momentum -- 2.5 Conservation of energy -- 2.6 Ideal gas -- 2.7 The Laval nozzle -- 2.8 Fundamentals of plasma -- 2.8.1 Physical properties of plasma -- 2.9 Kinetic theory of gases -- 2.9.1 Fundamental concepts -- 2.9.2 Velocity distribution function and macroscopic properties -- 2.9.3 Maxwell distribution
2.10 Summary -- Chapter 3 Computational Methods -- 3.1 Methods based on transport equations -- 3.1.1 Finite Difference Method -- 3.1.2 Finite Volume Method -- 3.1.3 Methods for unsteady problems -- 3.1.4 Solution algorithms for the Navier-Stokes equations -- 3.2 Direct Simulation Monte Carlo (DSMC) -- 3.2.1 Molecular transport -- 3.2.2 Molecular collisions -- 3.2.3 Implementation of boundary conditions -- 3.2.4 Macroscopic properties -- 3.3 Particle-In-Cell Method (PIC) -- 3.3.1 Particle motion -- Lorentz solver -- 3.3.2 Field equations -- Maxwell solver
3.4 Summary -- Chapter 4 Transonic Gas Flows AcrossMultiple Flow Regimes -- 4.1 State of the art and previous studies -- 4.2 Experimental setup -- 4.2.1 Vacuum and measurement systems -- 4.2.2 Arcjet thruster and Laval nozzle -- 4.2.3 Experimental series -- 4.3 Numerical setup -- 4.3.1 Solved equations and numerical solver -- 4.3.2 Numerical mesh and boundary conditions -- 4.3.3 Numerical setup for DSMC simulations -- 4.4 Results and discussion -- 4.4.1 Experimental results -- 4.4.2 Navier-Stokes simulations -- 4.4.3 DSMC results
4.4.5 Knudsen-dependent correcting function for the dimensionlesspressure drop -- 4.4.6 Molar mass dependency of the Knudsen function coefficients -- 4.4.7 Thrust and specific impulse -- 4.5 Summary -- Chapter 5 Development of a Kinetic PlasmaModel for Electric PropulsionSystems -- 5.1 Electric propulsion systems for spacecraft -- 5.2 State of the art and previous works -- 5.2.1 Resistojets -- 5.2.2 Arcjet thrusters -- 5.2.3 Ion thrusters -- 5.2.4 Hall thrusters -- 5.3 Development of a kinetic plasma model
5.3.2 Basis DSMC solver -- 5.3.3 Implementation of PIC algorithm -- 5.3.4 Coulomb collisions with the MCC algorithm -- 5.3.5 Electron-neutral collisions -- 5.3.6 Recombination -- 5.3.7 Boundary conditions in dsmcPlasmaFoam -- 5.3.8 Numerical aspects -- 5.3.9 Global model implementation in OpenFOAM -- 5.4 Summary -- Chapter 6 Validation of dsmcPlasmaFoam -- 6.1 Maxwell solver -- 6.2 Lorentz solver -- 6.2.1 Solver behaviour without implementation of the Leapfrog algorithm -- 6.2.2 Solver behaviour with implemented Leapfrog algorithm
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number URL Status Date due Barcode
Online Book (LOGIN USING YOUR MY CIU LOGIN AND PASSWORD) Online Book (LOGIN USING YOUR MY CIU LOGIN AND PASSWORD) G. Allen Fleece Library ONLINE Non-fiction TL709 (Browse shelf(Opens below)) Link to resource Available on1231608245

Description based upon print version of record.

Includes bibliographies and index.

Intro -- Chapter 1 Introduction -- 1.1 Motivation -- 1.2 Basic setup -- 1.3 Goals and thesis outline -- Chapter 2 Theoretical Principles -- 2.1 Knudsen number and flow regimes -- 2.2 Lagrangian and Eulerian specification of the flowfield -- 2.3 Conservation of mass -- 2.4 Conservation of momentum -- 2.5 Conservation of energy -- 2.6 Ideal gas -- 2.7 The Laval nozzle -- 2.8 Fundamentals of plasma -- 2.8.1 Physical properties of plasma -- 2.9 Kinetic theory of gases -- 2.9.1 Fundamental concepts -- 2.9.2 Velocity distribution function and macroscopic properties -- 2.9.3 Maxwell distribution

2.9.4 Boltzmann equation -- 2.10 Summary -- Chapter 3 Computational Methods -- 3.1 Methods based on transport equations -- 3.1.1 Finite Difference Method -- 3.1.2 Finite Volume Method -- 3.1.3 Methods for unsteady problems -- 3.1.4 Solution algorithms for the Navier-Stokes equations -- 3.2 Direct Simulation Monte Carlo (DSMC) -- 3.2.1 Molecular transport -- 3.2.2 Molecular collisions -- 3.2.3 Implementation of boundary conditions -- 3.2.4 Macroscopic properties -- 3.3 Particle-In-Cell Method (PIC) -- 3.3.1 Particle motion -- Lorentz solver -- 3.3.2 Field equations -- Maxwell solver

3.3.3 Particle and force weighting -- 3.4 Summary -- Chapter 4 Transonic Gas Flows AcrossMultiple Flow Regimes -- 4.1 State of the art and previous studies -- 4.2 Experimental setup -- 4.2.1 Vacuum and measurement systems -- 4.2.2 Arcjet thruster and Laval nozzle -- 4.2.3 Experimental series -- 4.3 Numerical setup -- 4.3.1 Solved equations and numerical solver -- 4.3.2 Numerical mesh and boundary conditions -- 4.3.3 Numerical setup for DSMC simulations -- 4.4 Results and discussion -- 4.4.1 Experimental results -- 4.4.2 Navier-Stokes simulations -- 4.4.3 DSMC results

4.4.4 Comparison between Navier-Stokes and experimental results -- 4.4.5 Knudsen-dependent correcting function for the dimensionlesspressure drop -- 4.4.6 Molar mass dependency of the Knudsen function coefficients -- 4.4.7 Thrust and specific impulse -- 4.5 Summary -- Chapter 5 Development of a Kinetic PlasmaModel for Electric PropulsionSystems -- 5.1 Electric propulsion systems for spacecraft -- 5.2 State of the art and previous works -- 5.2.1 Resistojets -- 5.2.2 Arcjet thrusters -- 5.2.3 Ion thrusters -- 5.2.4 Hall thrusters -- 5.3 Development of a kinetic plasma model

5.3.1 General modelling concept -- 5.3.2 Basis DSMC solver -- 5.3.3 Implementation of PIC algorithm -- 5.3.4 Coulomb collisions with the MCC algorithm -- 5.3.5 Electron-neutral collisions -- 5.3.6 Recombination -- 5.3.7 Boundary conditions in dsmcPlasmaFoam -- 5.3.8 Numerical aspects -- 5.3.9 Global model implementation in OpenFOAM -- 5.4 Summary -- Chapter 6 Validation of dsmcPlasmaFoam -- 6.1 Maxwell solver -- 6.2 Lorentz solver -- 6.2.1 Solver behaviour without implementation of the Leapfrog algorithm -- 6.2.2 Solver behaviour with implemented Leapfrog algorithm

6.3 Particle and force weighting.

COPYRIGHT NOT covered - Click this link to request copyright permission:

https://lib.ciu.edu/copyright-request-form

There are no comments on this title.

to post a comment.